Flee

A Insect of Arthropods.

Flea, the common name for the order Siphonaptera, includes 2,500 species of small flightless insects that live as external parasites of mammals and birds. Fleas live by ingesting the blood of their hosts. Adult fleas grow to about 3 millimetres (18 inch) long, are usually brown, and have bodies that are “flattened” sideways or narrow, enabling them to move through their hosts’ fur or feathers. They lack wings; their hind legs are extremely well adapted for jumping. Their claws keep them from being dislodged, and their mouthparts are adapted for piercing skin and sucking blood. They can leap 50 times their body length, a feat second only to jumps made by another group of insects, the superfamily of froghoppers. Flea larvae are worm-like, with no limbs; they have chewing mouthparts and feed on organic debris left on their hosts’ skin.

Fleas
Temporal range: Middle Jurassic – Recent PreꞒOSDCPTJKPgN
Scanning electron micrograph
Scientific classification
Domain:Eukaryota
Kingdom:Animalia
Phylum:Arthropoda
Class:Insecta
(unranked):Eumetabola
(unranked):Endopterygota
Superorder:Panorpida
Order:Siphonaptera
Latreille, 1825
Suborders
PseudopulicidaeSaurophthiridaeTarwiniidaeCeratophyllomorphaHystrichopsyllomorphaPulicomorphaPygiopsyllomorpha
Synonyms
Aphaniptera
www.kishankarmakar.com

Genetic evidence indicates that fleas are a specialised lineage of parasitic scorpionflies (Mecoptera) sensu lato, most closely related to the family Nannochoristidae. The earliest known fleas lived in the Middle Jurassic; modern-looking forms appeared in the Cenozoic. Fleas probably originated on mammals first and expanded their reach to birds. Each species of flea specializes, more or less, on one species of host: many species of flea never breed on any other host; some are less selective. Some families of fleas are exclusive to a single host group; for example, the Malacopsyllidae are found only on armadillos, the Ischnopsyllidae only on bats, and the Chimaeropsyllidae only on elephant shrews.

The oriental rat flea, Xenopsylla cheopis, is a vector of Yersinia pestis, the bacterium that causes bubonic plague. The disease was spread to humans by rodents, such as the black rat, which were bitten by infected fleas. Major outbreaks included the Plague of Justinian, about 540, and the Black Death, about 1350, each of which killed a sizeable fraction of the world’s people.

Fleas appear in human culture in such diverse forms as flea circuses; poems, such as John Donne‘s erotic “The Flea“; works of music, such as those by Modest Mussorgsky; and a film by Charlie Chaplin.

Morphology and behavior[edit]

Fleas are wingless insects, 1.5 to 3.3 millimetres (116 to 18 inch) long, that are agile, usually dark colored (for example, the reddish-brown of the cat flea), with a proboscis, or stylet, adapted to feeding by piercing the skin and sucking their host’s blood through their epipharynx. Flea legs end in strong claws that are adapted to grasp a host.[1]

Unlike other insects, fleas do not possess compound eyes but instead only have simple eyespots with a single biconvex lens; some species lack eyes altogether.[2] Their bodies are laterally compressed, permitting easy movement through the hairs or feathers on the host’s body. The flea body is covered with hard plates called sclerites.[1] These sclerites are covered with many hairs and short spines directed backward, which also assist its movements on the host. The tough body is able to withstand great pressure, likely an adaptation to survive attempts to eliminate them by scratching.[3]

Fleas lay tiny, white, oval eggs. The larvae are small and pale, have bristles covering their worm-like bodies, lack eyes, and have mouth parts adapted to chewing. The larvae feed on organic matter, especially the feces of mature fleas, which contain dried blood. Adults feed only on fresh blood.[4]

Jumping[edit]

Their legs are long, the hind pair well adapted for jumping; a flea can jump vertically up to 18 cm (7 in) and horizontally up to 33 cm (13 in),[5] making the flea one of the best jumpers of all known animals (relative to body size), second only to the froghopper. A flea can jump 60 times its length in height and 110 times its length in distance (vertically up to 7 inches and horizontally 13 inches). That’s equivalent to a 1.8 m (6 ft) adult human jumping 54.9 m (180 ft) vertically and 100.6 m (330 ft) horizontally. Rarely do fleas jump from dog to dog. Most flea infestations come from newly developed fleas from the pet’s environment.[6] The flea jump is so rapid and forceful that it exceeds the capabilities of muscle, and instead of relying on direct muscle power, fleas store muscle energy in a pad of the elastic protein named resilin before releasing it rapidly (like a human using a bow and arrow).[7] Immediately before the jump, muscles contract and deform the resilin pad, slowly storing energy which can then be released extremely rapidly to power leg extension for propulsion.[8] To prevent premature release of energy or motions of the leg, the flea employs a “catch mechanism”.[8] Early in the jump, the tendon of the primary jumping muscle passes slightly behind the coxa-trochanter joint, generating a torque which holds the joint closed with the leg close to the body.[8] To trigger jumping, another muscle pulls the tendon forward until it passes the joint axis, generating the opposite torque to extend the leg and power the jump by release of stored energy.[8] The actual take off has been shown by high-speed video to be from the tibiae and tarsi rather than from the trochantera (knees).[7]

Life cycle and development[edit]

Dog flea (from top) larva, egg, pupa and adult

Fleas are holometabolous insects, going through the four lifecycle stages of egglarvapupa, and imago (adult). In most species, neither female nor male fleas are fully mature when they first emerge but must feed on blood before they become capable of reproduction.[3] The first blood meal triggers the maturation of the ovaries in females and the dissolution of the testicular plug in males, and copulation soon follows.[9] Some species breed all year round while others synchronise their activities with their hosts’ life cycles or with local environmental factors and climatic conditions.[10] Flea populations consist of roughly 50% eggs, 35% larvae, 10% pupae, and 5% adults.[5]

Egg[edit]

The number of eggs laid depends on species, with batch sizes ranging from two to several dozen. The total number of eggs produced in a female’s lifetime (fecundity) varies from around one hundred to several thousand. In some species, the flea lives in the host’s nest or burrow and the eggs are deposited on the substrate,[9] but in others, the eggs are laid on the host itself and can easily fall off onto the ground. Because of this, areas where the host rests and sleeps become one of the primary habitats of eggs and developing larvae. The eggs take around two days to two weeks to hatch.[5]

Larva[edit]

Flea larva

Flea larvae emerge from the eggs to feed on any available organic material such as dead insects, faeces, conspecific eggs, and vegetable matter. In laboratory studies, some dietary diversity seems necessary for proper larval development. Blood-only diets allow only 12% of larvae to mature, whereas blood and yeast or dog chow diets allow almost all larvae to mature.[11] Another study also showed that 90% of larvae matured into adults when the diet included nonviable eggs.[12] They are blind and avoid sunlight, keeping to dark, humid places such as sand or soil, cracks and crevices, under carpets and in bedding.[13] The entire larval stage lasts between four and 18 days.[14]

Pupa[edit]

Given an adequate supply of food, larvae pupate and weave silken cocoons after three larval stages. Within the cocoon, the larva molts for a final time and undergoes metamorphosis into the adult form. This can take just four days, but may take much longer under adverse conditions, and there follows a variable-length stage during which the pre-emergent adult awaits a suitable opportunity to emerge. Trigger factors for emergence include vibrations (including sound), heat (in warm-blooded hosts), and increased levels of carbon dioxide, all of which may indicate the presence of a suitable host.[5] Large numbers of pre-emergent fleas may be present in otherwise flea-free environments, and the introduction of a suitable host may trigger a mass emergence.[13]

Adult[edit]

Once the flea reaches adulthood, its primary goal is to find blood and then to reproduce.[15] Female fleas can lay 5000 or more eggs over their life, permitting rapid increase in numbers.[16] Generally speaking, an adult flea only lives for 2 or 3 months. Without a host to provide a blood meal, a flea’s life can be as short as a few days. Under ideal conditions of temperature, food supply, and humidity, adult fleas can live for up to a year and a half.[16] Completely developed adult fleas can live for several months without eating, so long as they do not emerge from their puparia. Optimum temperatures for the flea’s life cycle are 21 °C to 30 °C (70 °F to 85 °F) and optimum humidity is 70%.[17]

Adult female rabbit fleas, Spilopsyllus cuniculi, can detect the changing levels of cortisol and corticosterone hormones in the rabbit’s blood that indicate it is getting close to giving birth. This triggers sexual maturity in the fleas and they start producing eggs. As soon as the baby rabbits are born, the fleas make their way down to them and once on board they start feeding, mating, and laying eggs. After 12 days, the adult fleas make their way back to the mother. They complete this mini-migration every time she gives birth.[17]

Taxonomy and phylogeny[edit]

History[edit]

Between 1735 and 1758, the Swedish naturalist Carl Linnaeus first classified insects, doing so on the basis of their wing structure. One of the seven orders into which he divided them was “Aptera”, meaning wingless, a group in which as well as fleas, he included spiderswoodlice and myriapods. It wasn’t until 1810 that the French zoologist Pierre André Latreille reclassified the insects on the basis of their mouthparts as well as their wings, splitting Aptera into Thysanura (silverfish), Anoplura (sucking lice) and Siphonaptera (fleas), at the same time separating off the arachnids and crustaceans into their own subphyla.[18] The group’s name, Siphonaptera, is zoological Latin from the Greek siphon (a tube) and aptera (wingless).[19]

External phylogeny[edit]

It was historically unclear whether the Siphonaptera are sister to the Mecoptera (scorpionflies and allies), or are inside that clade, making “Mecoptera” paraphyletic. The earlier suggestion that the Siphonaptera are sister to the Boreidae (snow scorpionflies)[20][21][22] is not supported. A 2020 genetic study recovered Siphonaptera within Mecoptera, with strong support, as the sister group to Nannochoristidae, a small, relictual group of mecopterans native to the Southern Hemisphere. Fleas and nannochoristids share several similarities with each other that are not shared with other mecopterans, including similar mouthparts as well as a similar sperm pump organisation.[23]

Relationships of Siphonaptera per Tihelka et al. 2020.[23]

AntliophoraDiptera (true flies) Boreidae (snow scorpionflies, 30 spp.) Nannochoristidae (southern scorpionflies, 8 spp.)Siphonaptera (fleas, 2500 spp.) Pistillifera (scorpionflies, hangingflies, 400 spp.) 

Fossil history[edit]

Cenozoic flea in amber, c. 20 mya, is morphologically modern.
Pseudopulex wangi, a primitive flea from the Early Cretaceous of China

Fleas likely descended from fluid feeding insects that probably fed on plants.[23] Fossils of large, wingless stem-group fleas with siphonate (sucking) mouthparts from the Middle Jurassic[24] to Early Cretaceous have been found in northeastern China and Russia, belonging to the families Saurophthiridae and Pseudopulicidae, as well as Tarwinia from the Early Cretaceous of Australia. Most flea families formed after the end of the Cretaceous (in the Paleogene and onwards). Modern fleas probably arose in the southern continental area of Gondwana, and migrated rapidly northwards from there. They most likely evolved with mammal hosts, only later moving to birds.[25]

Siphonaptera is a relatively small order of insects: members of the order undergo complete metamorphosis and are secondarily wingless (their ancestors had wings which modern forms have lost). In 2005, Medvedev listed 2005 species in 242 genera, and despite subsequent descriptions of new species, bringing the total up to around 2500 species,[20] this is the most complete database available. The order is divided into four infraorders and eighteen families. Some families are exclusive to a single host group; these include the Malacopsyllidae (armadillos), Ischnopsyllidae (bats) and Chimaeropsyllidae (elephant shrews).[26]

Many of the known species are little studied. Some 600 species (a quarter of the total) are known from single records. Over 94% of species are associated with mammalian hosts, and only about 3% of species can be considered to be specific parasites of birds. The fleas on birds are thought to have originated from mammalian fleas; at least sixteen separate groups of fleas switched to avian hosts during the evolutionary history of the Siphonaptera. Occurrences of fleas on reptiles is accidental, and fleas have been known to feed on the hemolymph (bloodlike body fluid) of ticks.[26]

Internal phylogeny[edit]

Flea phylogeny was long neglected, the discovery of homologies with the parts of other insects being made difficult by their extreme specialization. Whiting and colleagues prepared a detailed molecular phylogeny in 2008, with the basic structure shown in the cladogram. The Hectopsyllidae, including the harmful chigoe flea or jigger, is sister to the rest of the Siphonaptera.[20]

SiphonapteraHectopsyllidae (inc. jiggerPygiopsyllomorphaMacropsyllidaeCoptopsyllidaeNeotyphloceratiniCtenophthalminiDoratopsyllinaeStephanocircidae clade inc. RhopalopsyllidaeCtenophthalmidaeHystrichopsyllidae ChimaeropsyllidaePulicidae (inc. the cat flea, vector of bubonic plagueCeratophyllomorpha (inc. the Ceratophyllidae, such as the widespread moorhen flea

Taxonomy[edit]

As of 2023, there are 21 recognized families within the order Siphonaptera, 3 of which are extinct.[27] In addition, some researchers have suggested that the subfamily Stenoponiinae should be elevated to its own family (Stenoponiidae).[28]

Relationship with host[edit]

Flea bites in humans.

Fleas feed on a wide variety of warm-blooded vertebrates including dogs, cats, rabbits, squirrels, ferrets, rats, mice, birds, and sometimes humans. Fleas normally specialise in one host species or group of species, but can often feed but not reproduce on other species. Ceratophyllus gallinae affects poultry as well as wild birds.[29] As well as the degree of relatedness of a potential host to the flea’s original host, it has been shown that avian fleas that exploit a range of hosts, only parasitise species with low immune responses. In general, host specificity decreases as the size of the host species decreases. Another factor is the opportunities available to the flea to change host species; this is smaller in colonially nesting birds, where the flea may never encounter another species, than it is in solitary nesting birds. A large, long-lived host provides a stable environment that favours host-specific parasites.[30]

Although there are species named dog fleas (Ctenocephalides canis Curtis, 1826) and cat fleas (Ctenocephalides felis), fleas are not always strictly species-specific. A study in Virginia examined 244 fleas from 29 dogs: all were cat fleas. Dog fleas had not been found in Virginia in more than 70 years, and may not even occur in the US, so a flea found on a dog is likely a cat flea (Ctenocephalides felis).[31][32]

One theory of human hairlessness is that the loss of hair helped humans to reduce their burden of fleas and other ectoparasites.[33]

Direct effects of bites[edit]

Main article: Pulicosis

Human foot infested with jigger fleas, Tunga penetrans

In many species, fleas are principally a nuisance to their hosts, causing an itching sensation which in turn causes the host to try to remove the pest by biting, pecking or scratching. Fleas are not simply a source of annoyance, however. Flea bites cause a slightly raised, swollen, irritating nodule to form on the epidermis at the site of each bite, with a single puncture point at the centre, like a mosquito bite.[34]: 126  This can lead to an eczematous itchy skin disease called flea allergy dermatitis, which is common in many host species, including dogs and cats.[29] The bites often appear in clusters or lines of two bites, and can remain itchy and inflamed for up to several weeks afterwards. Fleas can lead to secondary hair loss as a result of frequent scratching and biting by the animal. They can also cause anemia in extreme cases.[34]: 126 

As a vector[edit]

Fleas are vectors for viralbacterial and rickettsial diseases of humans and other animals, as well as of protozoan and helminth parasites.[35] Bacterial diseases carried by fleas include murine or endemic typhus[34]: 124  and bubonic plague.[36] Fleas can transmit Rickettsia typhiRickettsia felisBartonella henselae, and the myxomatosis virus.[35]: 73  They can carry Hymenolepiasis tapeworms[37] and Trypanosome protozoans.[35]: 74  The chigoe flea or jigger (Tunga penetrans) causes the disease tungiasis, a major public health problem around the world.[38] Fleas that specialize as parasites on specific mammals may use other mammals as hosts; thus, humans may be bitten by cat and dog fleas.[39]

Relationship with humans[edit]

In literature and art[edit]

Fleas have appeared in poetry, literature, music and art; these include Robert Hooke‘s drawing of a flea under the microscope in his pioneering book Micrographia published in 1665,[40] poems by Donne and Jonathan Swift, works of music by Giorgio Federico Ghedini and Modest Mussorgsky, a play by Georges Feydeau, a film by Charlie Chaplin, and paintings by artists such as Giuseppe CrespiGiovanni Battista Piazzetta, and Georges de La Tour.[41]

John Donne’s erotic metaphysical poem “The Flea“, published in 1633 after his death, uses the conceit of a flea, which has sucked blood from the male speaker and his female lover, as an extended metaphor for their sexual relationship. The speaker tries to convince a lady to sleep with him, arguing that if the mingling of their blood in the flea is innocent, then sex would be also.[42]

The comic poem Siphonaptera was written in 1915 by the mathematician Augustus De Morgan, It describes an infinite chain of parasitism made of ever larger and ever smaller fleas.[43]

Flea circuses[edit]

Main article: Flea circus

Flea circuses provided entertainment to nineteenth century audiences. These circuses, extremely popular in Europe from 1830 onwards, featured fleas dressed as humans or towing miniature carts, chariotsrollers or cannon. These devices were originally made by watchmakers or jewellers to show off their skill at miniaturization. A ringmaster called a “professor” accompanied their performance with a rapid circus patter.[44][45]

flea circus: “The Go-As-You-Please Race, as seen through a Magnifying Glass”, engraved by J. G. Francis, from an article by C. F. Holder in St. Nicholas Magazine, 1886

Carriers of plague[edit]

The Great Plague of London, in 1665, killed up to 100,000 people.

Oriental rat fleasXenopsylla cheopis, can carry the coccobacillus Yersinia pestis. The infected fleas feed on rodent vectors of this bacterium, such as the black ratRattus rattus, and then infect human populations with the plague, as has happened repeatedly from ancient times, as in the Plague of Justinian in 541–542.[46] Outbreaks killed up to 200 million people across Europe between 1346 and 1671.[47] The Black Death pandemic between 1346 and 1353 likely killed over a third of the population of Europe.[48]

Because fleas carry plague, they have seen service as a biological weapon. During World War II, the Japanese army dropped fleas infested with Y. pestis in China. The bubonic and septicaemic plagues are the most probable form of the plague that would spread as a result of a bioterrorism attack that used fleas as a vector.[49]

The Rothschild Collection[edit]

The banker Charles Rothschild devoted much of his time to entomology, creating a large collection of fleas now in the Rothschild Collection at the Natural History Museum, London. He discovered and named the plague vector flea, Xenopsylla cheopis, also known as the oriental rat flea, in 1903.[50] Using what was probably the world’s most complete collection of fleas of about 260,000 specimens (representing some 73% of the 2,587 species and subspecies so far described), he described around 500 species and subspecies of Siphonaptera. He was followed in this interest by his daughter Miriam Rothschild, who helped to catalogue his enormous collection of the insects in seven volumes.[51][52]

Flea treatments[edit]

Main article: Flea treatments

Fleas have a significant economic impact. In America alone, approximately $2.8 billion is spent annually on flea-related veterinary bills and another $1.6 billion annually for flea treatment with pet groomers. Four billion dollars is spent annually for prescription flea treatment and $348 million for flea pest control.[13]

See also[edit]

References[edit]

  1. Jump up to:a b “Wiley: The Insects: An Outline of Entomology, 5th Edition – Gullan, P.J.; Cranston, P.S.” wiley.com. Retrieved 11 November 2016.
  2. ^ Taylor, Sean D.; Cruz, Katharina Dittmar de la; Porter, Megan L.; Whiting, Michael F. (May 2005). “Characterization of the Long-Wavelength Opsin from Mecoptera and Siphonaptera: Does a Flea See?”Molecular Biology and Evolution22 (5): 1165–1174. doi:10.1093/molbev/msi110ISSN 0737-4038PMID 15703237.
  3. Jump up to:a b Fleas. Koehler, P.G.; Oi, F.M. Printed July 1993, revised February 2003. Provided by the University of Florida
  4. ^ “Order Siphonaptera – Fleas”. BugGuide.Net. Retrieved 11 November 2016.
  5. Jump up to:a b c d Crosby, J.T. “What is the Life Cycle of the Flea?”Veterinary Parasites. About Home. Retrieved 4 November 2016.
  6. ^ “Fleas and Ticks: Facts about Fleas”mypet. Merck Animal Health. Retrieved 21 March 2022.
  7. Jump up to:a b “Fleas leap from feet, not knees”Science News. 2 October 2011. Retrieved 11 November 2016.
  8. Jump up to:a b c d Burrows, M. (2009). “How Fleas Jump”Journal of Experimental Biology212 (18): 2881–2883. doi:10.1242/jeb.022855PMID 19717668.
  9. Jump up to:a b Krasnov, Boris R. (2008). Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge University Press. pp. 44–54. ISBN 978-1-139-47266-1.
  10. ^ Krasnov, Boris R. (2008). Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge University Press. pp. 64–67. ISBN 978-1-139-47266-1.
  11. ^ Silverman, Jules; Appel, Arthur (March 1994). “Adult Cat Flea (Siphonaptera: Pulicidae) Excretion of Host Blood Proteins in Relation to Larval Nutrition” (PDF). Journal of Medical Entomology31 (2): 265–271. doi:10.1093/jmedent/31.2.265PMID 7910638. Retrieved 18 July 2014.
  12. ^ Shryock, J. (2006). “Time Spent by Ctenocephalides felis (Siphonaptera: Pulicidae) Larvae in Food Patches of Varying Quality”Environmental Entomology35 (2): 401–404. doi:10.1603/0046-225x-35.2.401.
  13. Jump up to:a b c Hinkle, Nancy C.; Koehler, Philip G. (2008). “Cat Flea, Ctenocephalides felis felis Bouché (Siphonaptera: Pulicidae)”. In Capinera, John L. (ed.). Encyclopedia of Entomology. Springer Netherlands. pp. 797–801. doi:10.1007/978-1-4020-6359-6_536ISBN 978-1-4020-6242-1.
  14. ^ “Flea Life Cycle: Eggs, Larvae, etc”Orkin.com. 11 April 2018. Retrieved 13 September 2019.
  15. ^ Koehler, P.G.; Pereira, R.M.; Diclaro, J.W. “Fleas”. Edis.ifas.ufl.edu. Retrieved 11 November 2016.
  16. Jump up to:a b “How long is the life span of a flea?”Everyday Mysteries: Fun Science Facts from the Library of Congress. Loc.gov. 2 July 2013. Retrieved 11 November 2016.
  17. Jump up to:a b Piper, Ross (2007), Extraordinary Animals: An Encyclopedia of Curious and Unusual AnimalsGreenwood Press.
  18. ^ Gillott, Cedric (2005). Entomology. Springer Science & Business Media. p. 97. ISBN 978-1-4020-3183-0.
  19. ^ Meyer, John R. (28 March 2016). “Siphonaptera”. North Carolina State University. Retrieved 3 December 2016.
  20. Jump up to:a b c Whiting, Michael F.; Whiting, Alison S.; Hastriter, Michael W.; Dittmar, Katharina (2008). “A molecular phylogeny of fleas (Insecta: Siphonaptera): origins and host associations”. Cladistics24 (5): 677–707. CiteSeerX 10.1.1.731.5211doi:10.1111/j.1096-0031.2008.00211.xS2CID 33808144.
  21. ^ Whiting, Michael F. (2002). “Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera”Zoologica Scripta31 (1): 93–104. doi:10.1046/j.0300-3256.2001.00095.xS2CID 56100681. Archived from the original on 5 January 2013.
  22. ^ Wiegmann, Brian; Yeates, David K. (2012). The Evolutionary Biology of Flies. Columbia University Press. p. 5. ISBN 978-0-231-50170-5Recently, a close affinity between Siphonaptera and Mecoptera has been convincingly demonstrated via morphology (Bilinski et al. 1998) and molecular data (Whiting 2002), rendering Mecoptera paraphyletic, but making the clade including Mecoptera and Siphonaptera monophyletic
  23. Jump up to:a b c Tihelka, Erik; Giacomelli, Mattia; Huang, Di-Ying; Pisani, Davide; Donoghue, Philip C. J.; Cai, Chen-Yang (21 December 2020). “Fleas are parasitic scorpionflies”Palaeoentomology3 (6): 641–653–641–653. doi:10.11646/palaeoentomology.3.6.16hdl:1983/8d3c12c6-529c-4754-b59d-3abf88a32fc9ISSN 2624-2834S2CID 234423213.
  24. ^ Huang, D.; Engel, M.S.; Cai, C.; Wu, H.; Nel, A. (8 March 2012). “Diverse transitional giant fleas from the Mesozoic era of China”. Nature483 (7388): 201–204. Bibcode:2012Natur.483..201Hdoi:10.1038/nature10839PMID 22388812S2CID 4415855.
  25. ^ Zhu, Qiyun; Hastriter, Michael; Whiting, Michael; Dittmar, Katherina (September 2015). “Fleas (Siphonaptera) are Cretaceous, and Evolved with Theria”. Molecular Phylogenetics and Evolution90: 129–139. bioRxiv 10.1101/014308doi:10.1016/j.ympev.2015.04.027PMID 25987528S2CID 13433327.
  26. Jump up to:a b Krasnov, Boris R. (2008). Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge University Press. pp. 3–9. ISBN 978-1-139-47266-1.
  27. ^ “Siphonaptera”Catalogue of Life. Retrieved 18 July 2023.
  28. ^ Zurita, A.; Callejón, R.; De Rojas, M.; Gómez López, M.S.; Cutillas, C. (December 2015). “Molecular study of Stenoponia tripectinata tripectinata (Siphonaptera: Ctenophthalmidae: Stenoponiinae) from the Canary Islands: taxonomy and phylogeny”. Bulletin of Entomological Research105 (6): 704–711. doi:10.1017/s0007485315000656PMID 26282009S2CID 35756267.
  29. Jump up to:a b Krasnov, Boris R. (2008). Functional and Evolutionary Ecology of Fleas: A Model for Ecological Parasitology. Cambridge University Press. pp. 72–74. ISBN 978-1-139-47266-1.
  30. ^ Poulin, Robert (2011). Evolutionary Ecology of Parasites (Second ed.). Princeton University Press. p. 68. ISBN 978-1-4008-4080-9.
  31. ^ Eckerlin, Ralph P. (2011). “WHAT KIND OF FLEAS DOES YOUR DOG HAVE?” (PDF). Banisteria37: 42–43.
  32. ^ Marchiondo, A. A.; Holdsworth, P. A.; Green, P.; Blagburn, B. L.; Jacobs, D. E. (30 April 2007). “World Association for the Advancement of Veterinary Parasitology guidelines for evaluating the efficacy of parasiticides for the treatment, prevention and control of flea and tick infestation on dogs and cats”Veterinary Parasitology145 (3): 332–344. doi:10.1016/j.vetpar.2006.10.028ISSN 0304-4017PMID 17140735.
  33. ^ Rantala, M.J. (2006). “Evolution of nakedness in Homo sapiens (PDF). Journal of Zoology273: 1–7. doi:10.1111/j.1469-7998.2007.00295.xISSN 0952-8369.
  34. Jump up to:a b c Mullen, Gary R.; Mullen, Gary; Durden, Lance (2009). Medical and Veterinary Entomology. Academic Press. p. 637. ISBN 978-0-12-372500-4.
  35. Jump up to:a b c Krasnov, Boris R. (2008). Functional and evolutionary ecology of fleas: a model for ecological parasitology. Cambridge University Press. p. 593. ISBN 978-0-521-88277-4.
  36. ^ Sherman, David M. (2002). Tending animals in the global village: a guide to international veterinary medicine. Wiley-Blackwell. p. 209. ISBN 978-0-683-18051-0.
  37. ^ Stein, Ernst (2003). Anorectal and colon diseases: textbook and color atlas of proctology. Springer. p. 478. ISBN 978-3-540-43039-1.
  38. ^ Smith, Darvin Scott. “Tungiasis”. Medscape. Retrieved 11 November 2016.
  39. ^ Barnes, Ethne (2007). Diseases and Human Evolution. UNM Press. p. 253. ISBN 978-0-8263-3066-6.
  40. ^ Neri, Janice (2008). “Between Observation and Image: Representations of Insects in Robert Hooke’s Micrographia”. In O’Malley, Therese; Meyers, Amy R. W. (eds.). The Art of Natural History. National Gallery of Art. pp. 83–107. ISBN 978-0-300-16024-6.
  41. ^ Roncalli, Amici R. (June 2004). “La storia della pulce nell’arte e nella letteratura” [The history of the flea in art and literature]. Parasitologia (in Italian). 46 (1): 15–18. PMID 15305680. See also the 2009 version.
  42. ^ Black, Joseph, ed. (2010). The Broadview Anthology of British Literature, Volume 2 (2nd ed.). Broadview Press. ISBN 978-1-55481-290-5.
  43. ^ “The Project Gutenberg eBook of A Budget of Paradoxes, Volume II (of II), by Augustus de Morgan”gutenberg.org. Retrieved 30 October 2019.
  44. ^ Schmäschke, R. (1 April 2000). “The flea in cultural history and first effects of its control”. Berliner und Münchener Tierärztliche Wochenschrift113 (4): 152–160. ISSN 0005-9366PMID 10816916.
  45. ^ “The rise and demise of the flea circus”Natural Histories. BBC Radio 4. Retrieved 2 November 2016.
  46. ^ Rosen, William (2007). Justinian’s Flea: Plague, Empire, and the Birth of Europe. Viking Adult. p. 3ISBN 978-0-670-03855-8.
  47. ^ Hays, J. N. (1998). The Burdens of Disease: Epidemics and Human Response in Western History. Rutgers University Press. pp. 58 and following. ISBN 978-0-8135-2528-0.
  48. ^ Austin Alchon, Suzanne (2003). A pest in the land: new world epidemics in a global perspective. University of New Mexico Press. p. 21. ISBN 978-0-8263-2871-7.
  49. ^ Bossi, P.; et al. (2004). “Bichat guidelines for the clinical management of plague and bioterrorism-related plague”Eurosurveillance9 (12): Article 12.
  50. ^ “Charles Rothschild”The Wildlife Trusts. Retrieved 1 November 2016.
  51. ^ Sullivan, Walter (10 April 1984). “Miriam Rothschild Talks of Fleas”The New York Times. Retrieved 1 November 2016.
  52. ^ “Siphonaptera collections”Natural History Museum, London. Retrieved 1 November 2016.
hidevteFlea-borne diseases
Bacterial infection
(all G-)
Murine typhusLyme diseaseRocky Mountain spotted feverEhrlichiosisRelapsing feverTularemia
Viral infectionTick-borne meningoencephalitisColorado tick feverCrimean–Congo hemorrhagic feverMyxomatosis
Protozoan infectionBabesiosisCytauxzoonosis
HelminthHymenolepiasis tapeworm
Vectors
showvteInsect orders
showvteExtant Mecoptera and Siphonaptera families
Taxon identifiersWikidataQ388162WikispeciesSiphonapteraADWSiphonapteraAFDSiphonapteraBOLD91399BugGuide7040CoL43JEoL1062EPPO1SIPHOFauna Europaea12219Fauna Europaea (new)e2381c13-82d1-4288-b3e4-b65953680dbbFossilworks137071GBIF1366iNaturalist83204IRMNG11386ITIS152732NBNNBNSYS0000161002NCBI7509NZOR: b0ad586a-2f89-43f0-90a0-a8b32b2f2323WoRMS991408
Authority control databases: National SpainFranceBnF dataGermanyIsraelUnited StatesJapanCzech Republic

Categories


“Flea”

Flea Definitions in Bengali Language.

Flea , অর্ডার সিফোনাপ্টেরার সাধারণ নাম , এতে 2,500 প্রজাতির ছোট উড়ন্ত পোকামাকড় রয়েছে যা স্তন্যপায়ী প্রাণী এবং পাখিদের বাহ্যিক পরজীবী হিসাবে বাস করে । মাছিরা তাদের হোস্টের রক্ত ​​খেয়ে বেঁচে থাকে। প্রাপ্তবয়স্ক মাছিগুলি প্রায় 3 মিলিমিটার ( 1 ⁄ 8 ইঞ্চি) লম্বা হয়, সাধারণত বাদামী হয় এবং দেহগুলি “চ্যাপ্টা” পাশের বা সরু হয়, যা তাদের হোস্টের পশম বা পালকের মধ্য দিয়ে যেতে সক্ষম করে। তাদের ডানার অভাব; তাদের পিছনের পাগুলি লাফানোর জন্য অত্যন্ত ভালভাবে অভিযোজিত। তাদের নখরগুলি তাদের বিচ্ছিন্ন হওয়া থেকে রক্ষা করে এবং তাদের মুখের অংশগুলি ত্বকে ছিদ্র করা এবং রক্ত ​​চোষার জন্য অভিযোজিত হয়. তারা তাদের দৈহিক দৈর্ঘ্যের 50 গুণ লাফ দিতে পারে, ব্যাঙঘাপারের সুপারফ্যামিলি পোকামাকড়ের আরেকটি গ্রুপের দ্বারা লাফানোর দ্বিতীয় কৃতিত্ব । ফ্লি লার্ভা কৃমির মতো, কোন অঙ্গবিহীন; তাদের মুখের অংশ চিবানো থাকে এবং তাদের হোস্টের ত্বকে জৈব ধ্বংসাবশেষ খাওয়ায়।

জেনেটিক প্রমাণ ইঙ্গিত করে যে fleas পরজীবী বিচ্ছু (Mecoptera) সেনসু ল্যাটোর একটি বিশেষ বংশ , যা সবচেয়ে ঘনিষ্ঠভাবে Nannochoristidae পরিবারের সাথে সম্পর্কিত । প্রাচীনতম পরিচিত fleas মধ্য জুরাসিক বাস করত ; আধুনিক চেহারার রূপগুলি সেনোজোয়িক -এ উপস্থিত হয়েছিল । Fleas সম্ভবত প্রথমে স্তন্যপায়ী প্রাণীদের থেকে উদ্ভূত হয়েছিল এবং পাখিদের কাছে তাদের নাগাল প্রসারিত করেছিল। মাছির প্রতিটি প্রজাতি কম-বেশি, এক প্রজাতির হোস্টের উপর বিশেষীকরণ করে: অনেক প্রজাতির মাছি কখনো অন্য কোনো পোষকের উপর বংশবৃদ্ধি করে না; কিছু কম নির্বাচনী হয়. fleas কিছু পরিবার একটি একক হোস্ট গ্রুপ একচেটিয়া হয়; উদাহরণস্বরূপ, ম্যালাকোপসিলিডি শুধুমাত্র আর্মাডিলোতে পাওয়া যায় , ইস্নোপসিলিডি শুধুমাত্রবাদুড় , এবং Chimaeropsyllidae শুধুমাত্র হাতির কাঁচে ।

প্রাচ্যের ইঁদুরের মাছি, জেনোপসাইলা চিওপিস , ইয়েরসিনিয়া পেস্টিসের একটি ভেক্টর , যে ব্যাকটেরিয়া বুবোনিক প্লেগ সৃষ্টি করে । এই রোগটি ইঁদুর দ্বারা মানুষের মধ্যে ছড়িয়ে পড়েছিল, যেমন কালো ইঁদুর , যা সংক্রামিত মাছি দ্বারা কামড়ানো হয়েছিল। প্রধান প্রাদুর্ভাবের মধ্যে রয়েছে প্লেগ অফ জাস্টিনিয়ান , প্রায় 540, এবং ব্ল্যাক ডেথ , প্রায় 1350, যার প্রত্যেকটি বিশ্বের মানুষের একটি বড় অংশকে হত্যা করেছিল।

ফ্লিস সার্কাসের মতো বৈচিত্র্যময় আকারে মানব সংস্কৃতিতে উপস্থিত হয় ; কবিতা, যেমন জন ডনের ইরোটিক ” দ্য ফ্লি “; সঙ্গীতের কাজ, যেমন মোডেস্ট মুসর্গস্কির দ্বারা ; এবং চার্লি চ্যাপলিনের একটি চলচ্চিত্র ।

রূপবিদ্যা এবং আচরণ [ সম্পাদনা ]

মাছিরা ডানাবিহীন পোকা, 1.5 থেকে 3.3 মিলিমিটার ( 1 ⁄ 16 থেকে 1 ⁄ 8 ইঞ্চি) লম্বা, যেগুলি চটপটে, সাধারণত গাঢ় রঙের (উদাহরণস্বরূপ, বিড়ালের মাছির লালচে-বাদামী ), একটি প্রোবোসিস , বা স্টাইলেট, অভিযোজিত চামড়া ছিদ্র করে এবং তাদের এপিফারিনক্সের মাধ্যমে তাদের হোস্টের রক্ত ​​চুষে খাওয়ানোর জন্য। মাছির পা শক্ত নখর দিয়ে শেষ হয় যা হোস্টকে ধরতে অভিযোজিত হয়। [১]

অন্যান্য পোকামাকড় থেকে ভিন্ন, fleas যৌগিক চোখ ধারণ করে না কিন্তু পরিবর্তে শুধুমাত্র একটি একক বাইকনভেক্স লেন্স সহ সাধারণ চোখের দাগ থাকে; কিছু প্রজাতির চোখের সম্পূর্ণ অভাব। [২] তাদের দেহগুলি পার্শ্বীয়ভাবে সংকুচিত হয়, যা হোস্টের শরীরের লোম বা পালকের মাধ্যমে সহজে চলাচলের অনুমতি দেয়। মাছির দেহটি স্ক্লেরাইট নামক শক্ত প্লেট দিয়ে আবৃত থাকে। [১] এই স্ক্লেরাইটগুলি অনেকগুলি লোম এবং ছোট মেরুদণ্ড দ্বারা আবৃত থাকে যা পিছনের দিকে নির্দেশিত হয়, যা হোস্টের উপর এর চলাচলে সহায়তা করে। শক্ত শরীর বড় চাপ সহ্য করতে সক্ষম, সম্ভবত স্ক্র্যাচিং করে তাদের নির্মূল করার প্রচেষ্টা থেকে বাঁচতে একটি অভিযোজন । [৩]

মাছি ছোট, সাদা, ডিম্বাকৃতি ডিম পাড়ে। লার্ভা ছোট এবং ফ্যাকাশে, তাদের কৃমির মতো শরীর ঢেকে ব্রিস্টেল থাকে, চোখ থাকে না এবং মুখের অংশ চিবানোর জন্য অভিযোজিত হয়। লার্ভা জৈব পদার্থ খায়, বিশেষ করে পরিপক্ক মাছির মল, যাতে শুকনো রক্ত ​​থাকে। প্রাপ্তবয়স্করা শুধুমাত্র তাজা রক্ত ​​খাওয়ায়। [৪]

লাফানো [ সম্পাদনা ]

তাদের পা লম্বা, পিছনের জোড়া ভালভাবে লাফানোর জন্য অভিযোজিত; একটি মাছি উল্লম্বভাবে 18 সেমি (7 ইঞ্চি) পর্যন্ত এবং অনুভূমিকভাবে 33 সেমি (13 ইঞ্চি) পর্যন্ত লাফ দিতে পারে, [5] সমস্ত পরিচিত প্রাণীদের (দেহের আকারের সাথে তুলনা করে) ফ্লীকে সেরা জাম্পারগুলির মধ্যে একটি করে তোলে, দ্বিতীয় স্থানে। ফ্রগহপার _ একটি মাছি তার দৈর্ঘ্যের 60 গুণ উচ্চতা এবং 110 গুণ দূরত্বে (উল্লম্বভাবে 7 ইঞ্চি এবং অনুভূমিকভাবে 13 ইঞ্চি পর্যন্ত) লাফ দিতে পারে। এটি একটি 1.8 মিটার (6 ফুট) প্রাপ্তবয়স্ক মানুষের 54.9 মিটার (180 ফুট) উল্লম্বভাবে এবং 100.6 মিটার (330 ফুট) অনুভূমিকভাবে লাফানোর সমান। কদাচিৎ fleas কুকুর থেকে কুকুর লাফ. পোষা প্রাণীর পরিবেশ থেকে নতুন বিকশিত fleas থেকে বেশিরভাগ flea infestations আসে। [৬]ফ্লি জাম্প এতই দ্রুত এবং জোরদার যে এটি পেশীর ক্ষমতাকে ছাড়িয়ে যায় এবং সরাসরি পেশী শক্তির উপর নির্ভর না করে, fleas দ্রুত মুক্তির আগে রেসিলিন নামক ইলাস্টিক প্রোটিনের একটি প্যাডে পেশী শক্তি সঞ্চয় করে (যেমন একজন মানুষ ধনুক ব্যবহার করে এবং তীর)। [৭] লাফানোর ঠিক আগে, পেশীগুলি সংকুচিত হয় এবং রেসিলিন প্যাডকে বিকৃত করে, ধীরে ধীরে শক্তি সঞ্চয় করে যা প্রপালশনের জন্য পাওয়ার লেগ এক্সটেনশনে অত্যন্ত দ্রুত মুক্তি পেতে পারে। [৮] পায়ের শক্তি বা গতির অকাল মুক্তি রোধ করতে, মাছি একটি “ক্যাচ মেকানিজম” ব্যবহার করে। [৮] লাফের প্রথম দিকে, প্রাথমিক জাম্পিং পেশীর টেন্ডন কক্সা-ট্রোচেন্টার জয়েন্টের কিছুটা পিছনে চলে যায়, যা একটি টর্ক তৈরি করেযা পায়ের সাথে শরীরের কাছাকাছি জয়েন্ট বন্ধ করে রাখে। [৮] জাম্পিং ট্রিগার করার জন্য, অন্য একটি পেশী টেন্ডনকে সামনের দিকে টেনে নিয়ে যায় যতক্ষণ না এটি যৌথ অক্ষ অতিক্রম করে, বিপরীত ঘূর্ণন সঁচারক বল তৈরি করে পাকে প্রসারিত করে এবং সঞ্চিত শক্তির মুক্তির মাধ্যমে লাফকে শক্তি দেয়। [৮] প্রকৃত উড্ডয়নটি উচ্চ-গতির ভিডিওতে দেখানো হয়েছে যেটি ট্রোকান্টেরা ( হাঁটু) থেকে নয় বরং টিবিয়া এবং টারসি থেকে হতে পারে। [৭]

জীবনচক্র এবং বিকাশ [ সম্পাদনা ]

কুকুরের মাছি (উপর থেকে) লার্ভা, ডিম, পিউপা এবং প্রাপ্তবয়স্ক

Fleas হল হলোমেটাবোলাস পোকা , ডিম , লার্ভা , পিউপা এবং ইমাগো (প্রাপ্তবয়স্ক) এর চারটি জীবনচক্র ধাপ অতিক্রম করে । বেশিরভাগ প্রজাতির মধ্যে, স্ত্রী বা পুরুষ মাছি উভয়ই সম্পূর্ণ পরিপক্ক হয় না যখন তারা প্রথম আবির্ভূত হয় তবে প্রজনন করতে সক্ষম হওয়ার আগে তাদের অবশ্যই রক্ত ​​খাওয়াতে হবে। [৩] প্রথম রক্তের খাবার মহিলাদের মধ্যে ডিম্বাশয়ের পরিপক্কতা এবং পুরুষদের মধ্যে টেস্টিকুলার প্লাগ দ্রবীভূত করে এবং শীঘ্রই যৌন মিলন শুরু হয়। [৯] কিছু প্রজাতি সারা বছর বংশবৃদ্ধি করে যখন অন্যরা তাদের ক্রিয়াকলাপকে তাদের হোস্টের জীবনচক্র বা স্থানীয় পরিবেশগত কারণ এবং জলবায়ু পরিস্থিতির সাথে সমন্বয় করে। [১০]Flea জনসংখ্যার মধ্যে প্রায় 50% ডিম, 35% লার্ভা, 10% pupae এবং 5% প্রাপ্তবয়স্ক থাকে। [৫]

ডিম [ সম্পাদনা ]

ডিম পাড়ার সংখ্যা প্রজাতির উপর নির্ভর করে, ব্যাচের আকার দুই থেকে কয়েক ডজন পর্যন্ত। একটি মহিলার জীবদ্দশায় উত্পাদিত ডিমের মোট সংখ্যা ( উৎপাদনশীলতা) প্রায় একশ থেকে কয়েক হাজারের মধ্যে পরিবর্তিত হয়। কিছু প্রজাতিতে, মাছি হোস্টের বাসা বা গর্তের মধ্যে থাকে এবং ডিমগুলি সাবস্ট্রেটে জমা হয়, [9] কিন্তু অন্যদের মধ্যে, ডিমগুলি হোস্টের উপরই পাড়ে এবং সহজেই মাটিতে পড়ে যায়। এই কারণে, পোষক যেখানে বিশ্রাম নেয় এবং ঘুমায় সেগুলি ডিম এবং বিকাশমান লার্ভার প্রাথমিক আবাসস্থলগুলির মধ্যে একটি হয়ে ওঠে। ডিম ফুটতে প্রায় দুই দিন থেকে দুই সপ্তাহ সময় লাগে। [৫]

লার্ভা [ সম্পাদনা ]

মাছি লার্ভা

মৃত পোকামাকড়, মল, নির্দিষ্ট ডিম এবং উদ্ভিজ্জ পদার্থের মতো উপলব্ধ জৈব উপাদান খাওয়ার জন্য ফ্লি লার্ভা ডিম থেকে বের হয় । পরীক্ষাগার গবেষণায়, কিছু খাদ্যতালিকাগত বৈচিত্র্য যথাযথ লার্ভা বিকাশের জন্য প্রয়োজনীয় বলে মনে হয়। রক্ত-শুধু খাদ্যাভ্যাস মাত্র 12% লার্ভাকে পরিপক্ক হতে দেয়, যেখানে রক্ত ​​এবং খামির বা কুকুরের চাউ ডায়েট প্রায় সমস্ত লার্ভাকে পরিপক্ক হতে দেয়। [১১] অন্য একটি সমীক্ষায় আরও দেখা গেছে যে ৯০% লার্ভা প্রাপ্তবয়স্কদের মধ্যে পরিপক্ক হয় যখন খাদ্যে অব্যবহৃত ডিম অন্তর্ভুক্ত থাকে। [১২] তারা অন্ধ এবং সূর্যালোক এড়িয়ে চলে, অন্ধকার, আর্দ্র জায়গায় যেমন বালি বা মাটি, ফাটল ও ফাটল, কার্পেটের নিচে এবং বিছানায়। [১৩] সম্পূর্ণ লার্ভা পর্যায় চার থেকে ১৮ দিনের মধ্যে স্থায়ী হয়। [১৪]

পিউপা [ সম্পাদনা ]

পর্যাপ্ত খাদ্য সরবরাহ করা হলে লার্ভা পিউপেট করে এবং তিনটি লার্ভা পর্যায়ের পর সিল্কেন কোকুন বুনে । কোকুন এর মধ্যে, লার্ভা চূড়ান্ত সময়ের জন্য গলে যায় এবং প্রাপ্তবয়স্ক আকারে রূপান্তরিত হয়। এতে মাত্র চার দিন সময় লাগতে পারে, কিন্তু প্রতিকূল পরিস্থিতিতে অনেক বেশি সময় লাগতে পারে, এবং একটি পরিবর্তনশীল-দৈর্ঘ্যের পর্যায় অনুসরণ করে যে সময়ে প্রাক-আবির্ভাবপ্রাপ্ত প্রাপ্তবয়স্ক ব্যক্তি উত্থানের উপযুক্ত সুযোগের অপেক্ষায় থাকে। উদ্ভবের ট্রিগার কারণগুলির মধ্যে রয়েছে কম্পন (শব্দ সহ), তাপ (উষ্ণ-রক্তযুক্ত হোস্টে), এবং কার্বন ডাই অক্সাইডের বর্ধিত মাত্রা , এগুলি সবই একটি উপযুক্ত হোস্টের উপস্থিতি নির্দেশ করতে পারে। [৫]অন্যথায় মাছি-মুক্ত পরিবেশে প্রচুর সংখ্যক প্রাক-আবির্ভাব মাছি উপস্থিত থাকতে পারে এবং উপযুক্ত হোস্টের প্রবর্তন একটি ব্যাপক উত্থান ঘটাতে পারে। [১৩]

প্রাপ্তবয়স্ক [ সম্পাদনা ]

মাছি একবার প্রাপ্তবয়স্ক হয়ে গেলে, এর প্রাথমিক লক্ষ্য রক্ত ​​খুঁজে বের করা এবং তারপরে প্রজনন করা। [১৫] স্ত্রী মাছিরা তাদের জীবনে 5000 বা তার বেশি ডিম পাড়তে পারে, যার ফলে সংখ্যা দ্রুত বৃদ্ধি পায়। [১৬] সাধারণভাবে বলতে গেলে, একটি পূর্ণবয়স্ক মাছি মাত্র ২ বা ৩ মাস বাঁচে। রক্তের খাবার সরবরাহ করার জন্য একটি হোস্ট ছাড়া, একটি মাছির জীবন কয়েক দিনের মতো ছোট হতে পারে। তাপমাত্রা, খাদ্য সরবরাহ এবং আর্দ্রতার আদর্শ অবস্থার অধীনে, প্রাপ্তবয়স্ক মাছিগুলি দেড় বছর পর্যন্ত বাঁচতে পারে। [১৬] সম্পূর্ণরূপে বিকশিত প্রাপ্তবয়স্ক মাছিরা না খেয়ে কয়েক মাস বেঁচে থাকতে পারে, যতক্ষণ না তারা তাদের পিউপারিয়া থেকে বের হয় । মাছির জীবনচক্রের জন্য সর্বোত্তম তাপমাত্রা হল 21 °C থেকে 30 °C (70 °F থেকে 85 °F) এবং সর্বোত্তম আর্দ্রতা 70%। [১৭]

প্রাপ্তবয়স্ক মহিলা খরগোশের মাছি, স্পিলোপসাইলাস কুনিকুলি , খরগোশের রক্তে কর্টিসল এবং কর্টিকোস্টেরন হরমোনের পরিবর্তিত মাত্রা সনাক্ত করতে পারে যা ইঙ্গিত করে যে এটি জন্ম দেওয়ার কাছাকাছি চলে আসছে। এটি fleas মধ্যে যৌন পরিপক্কতা ট্রিগার এবং তারা ডিম উত্পাদন শুরু. বাচ্চা খরগোশের জন্মের সাথে সাথে, fleas তাদের কাছে নেমে আসে এবং একবার জাহাজে তারা খাওয়ানো, সঙ্গম করা এবং ডিম পাড়া শুরু করে। 12 দিন পর, প্রাপ্তবয়স্ক মাছিরা মায়ের কাছে ফিরে আসে। প্রতিবার যখন সে জন্ম দেয় তারা এই মিনি-মাইগ্রেশনটি সম্পন্ন করে। [১৭]

শ্রেণীবিন্যাস এবং ফাইলোজনি [ সম্পাদনা ]

ইতিহাস [ সম্পাদনা ]

1735 এবং 1758 সালের মধ্যে, সুইডিশ প্রকৃতিবিদ কার্ল লিনিয়াস প্রথম কীটপতঙ্গকে তাদের ডানার গঠনের ভিত্তিতে শ্রেণীবদ্ধ করেছিলেন। তিনি যে সাতটি আদেশে তাদের বিভক্ত করেছিলেন তার মধ্যে একটি হল “অ্যাপ্টেরা”, যার অর্থ ডানাবিহীন, একটি দল যেখানে মাছির পাশাপাশি তিনি মাকড়সা , উডলাইস এবং মাইরিয়াপডস অন্তর্ভুক্ত করেছিলেন । এটি 1810 সাল পর্যন্ত নয় যে ফরাসি প্রাণীবিদ পিয়েরে আন্দ্রে ল্যাত্রেলি পোকামাকড়গুলিকে তাদের মুখের অংশের পাশাপাশি তাদের ডানার ভিত্তিতে পুনরায় শ্রেণীবদ্ধ করেছিলেন, অ্যাপটেরাকে থাইসানুরা ( সিলভারফিশ), অ্যানোপ্লুরা (উকুন চোষা) এবং সিফোনাপ্টেরা (ফ্লিস) এ বিভক্ত করেছিলেন। আরাকনিড এবং ক্রাস্টেসিয়ানদের তাদের নিজস্ব সাবফাইলায় আলাদা করার সময়।[১৮] গ্রুপটির নাম, সিফোনাপটেরা, গ্রীক সাইফন (একটি টিউব) এবং অ্যাপটেরা (ডানাবিহীন) থেকে প্রাণীবিদ্যাগত ল্যাটিন। [১৯]

বাহ্যিক ফাইলোজেনি [ সম্পাদনা ]

এটি ঐতিহাসিকভাবে অস্পষ্ট ছিল যে সিফোনপ্টেরা মেকোপ্টেরার বোন (বিচ্ছু এবং মিত্র), নাকি সেই ক্লেডের অভ্যন্তরে “মেকোপ্টেরা” প্যারাফাইলেটিক তৈরি করে। পূর্বের পরামর্শ যে সিফোনপ্টেরা বোরেডি (তুষার বিচ্ছু) এর বোন [২০] [২১] [২২] সমর্থিত নয়। 2020 সালের একটি জেনেটিক গবেষণায় মেকোপ্টেরার মধ্যে সিফোনপ্টেরাকে পুনরুদ্ধার করা হয়েছে, দৃঢ় সমর্থনের সাথে, ন্যানোকোরিস্টিডির বোন গ্রুপ হিসাবে , দক্ষিণ গোলার্ধের স্থানীয় মেকোপ্টেরানদের একটি ছোট, অনুপ্রাসিক গোষ্ঠী। Fleas এবং nannochoristids একে অপরের সাথে বেশ কিছু সাদৃশ্য শেয়ার করে যা অন্যান্য মেকোপ্টেরানদের সাথে ভাগ করা হয় না, যার মধ্যে একই রকম মাউথপার্ট এবং একই রকম শুক্রাণু পাম্প সংস্থা।[২৩]

তিহেলকা এট আল প্রতি Siphonaptera এর সম্পর্ক। 2020। [23]

অ্যান্টলিওফোরাডিপ্টেরা (সত্য মাছি)Boreidae (তুষার বিচ্ছু, 30 spp.)Nannochoristidae (দক্ষিণ বিছা, 8 spp.)সিফোনাপটেরা (ফ্লিস, 2500 এসপিপি।)পিস্টিলিফেরা (বিচ্ছু, ঝুলন্ত মাছি, 400 এসপিপি ।)

জীবাশ্ম ইতিহাস [ সম্পাদনা ]

অ্যাম্বারে সেনোজোয়িক ফ্লি , গ. 20 mya , morphologically আধুনিক।
সিউডোপুলেক্স ওয়াঙ্গি , চীনের প্রারম্ভিক ক্রিটেসিয়াস থেকে একটি আদিম মাছি

Fleas সম্ভবত উদ্ভিদে খাওয়ানো তরল খাওয়ানো পোকামাকড় থেকে নেমে এসেছে। [২৩] মধ্য জুরাসিক [২৪] মধ্য জুরাসিক [২৪] থেকে প্রারম্ভিক ক্রিটেসিয়াস পর্যন্ত সিফোনেট (চুষে নেওয়া) মুখের অংশ সহ বৃহৎ, ডানাবিহীন স্টেম-গ্রুপ ফ্লিসের জীবাশ্ম উত্তর-পূর্ব চীন ও রাশিয়ায় পাওয়া গেছে, যা Saurophthiridae এবং Pseudopulicidae পরিবারের অন্তর্গত , সেইসাথে তারউইনিয়া থেকে । অস্ট্রেলিয়ার প্রারম্ভিক ক্রিটেসিয়াস। বেশিরভাগ মাছি পরিবারগুলি ক্রিটেসিয়াসের শেষের পরে (প্যালিওজিনে এবং তার পরে) গঠিত হয়েছিল। আধুনিক মাছি সম্ভবত গন্ডোয়ানার দক্ষিণ মহাদেশীয় অঞ্চলে উদ্ভূত হয়েছিল, এবং সেখান থেকে দ্রুত উত্তর দিকে স্থানান্তরিত হয়। তারা সম্ভবত স্তন্যপায়ী হোস্টদের সাথে বিবর্তিত হয়েছিল, শুধুমাত্র পরে পাখিদের কাছে চলে যায় । [২৫]

সিফোনাপ্টেরা হল পোকামাকড়ের একটি অপেক্ষাকৃত ছোট ক্রম: অর্ডারের সদস্যরা সম্পূর্ণ রূপান্তরিত হয় এবং দ্বিতীয়ত ডানাহীন (তাদের পূর্বপুরুষদের ডানা ছিল যা আধুনিক রূপ হারিয়েছে)। 2005 সালে, মেদভেদেভ 242টি প্রজাতির 2005টি প্রজাতির তালিকাভুক্ত করেন এবং পরবর্তীকালে নতুন প্রজাতির বর্ণনা দেওয়া সত্ত্বেও, মোট সংখ্যা প্রায় 2500 প্রজাতিতে নিয়ে আসে, [20] এটিই সবচেয়ে সম্পূর্ণ ডাটাবেস উপলব্ধ। আদেশটি চারটি ইনফ্রাঅর্ডার এবং আঠারোটি পরিবারে বিভক্ত। কিছু পরিবার একক হোস্ট গ্রুপের জন্য একচেটিয়া; এর মধ্যে রয়েছে Malacopsyllidae ( armadillos ), Ischnopsyllidae ( bats ) এবং Chimaeropsyllidae ( হাতির শ্রুস )। [২৬]

পরিচিত প্রজাতির অনেক কম অধ্যয়ন করা হয়. প্রায় 600 প্রজাতি (মোট এক চতুর্থাংশ) একক রেকর্ড থেকে জানা যায়। 94% এরও বেশি প্রজাতি স্তন্যপায়ী হোস্টের সাথে যুক্ত , এবং মাত্র 3% প্রজাতিকে পাখির নির্দিষ্ট পরজীবী হিসাবে বিবেচনা করা যেতে পারে । পাখির মাছি স্তন্যপায়ী মাছি থেকে উদ্ভূত হয়েছে বলে মনে করা হয়; সিফোনাপ্টেরার বিবর্তনীয় ইতিহাসের সময় মাছিদের অন্তত ষোলটি পৃথক দল এভিয়ান হোস্টে চলে গিয়েছিল। সরীসৃপদের উপর fleas এর ঘটনা দুর্ঘটনাজনিত, এবং fleas টিক্সের হেমোলিম্ফ (রক্তের মতো শরীরের তরল) খাওয়ানোর জন্য পরিচিত । [২৬]

অভ্যন্তরীণ ফাইলোজেনি [ সম্পাদনা ]

Flea phylogeny দীর্ঘকাল অবহেলিত ছিল, অন্যান্য পোকামাকড়ের অংশগুলির সাথে সমজাতীয়তা আবিষ্কার তাদের চরম বিশেষীকরণ দ্বারা কঠিন হয়ে পড়েছিল। হোয়াইটিং এবং সহকর্মীরা 2008 সালে ক্ল্যাডোগ্রামে দেখানো মৌলিক কাঠামোর সাথে একটি বিশদ আণবিক ফাইলোজনি প্রস্তুত করেছিলেন। ক্ষতিকারক চিগো ফ্লি বা জিগার সহ হেক্টোপসাইলিডি সিফোনপ্টেরার বাকি অংশের বোন। [২০]

সাইফোনাপ্টেরহেক্টোপসাইলিডি (ইঙ্ক. জিগার )Pygiopsyllomorphaম্যাক্রোপসাইলিডি , কপ্টোসাইলিডিনিওটাইফ্লোসেরাটিনি , স্টিনোফথালমিনি , ডোরাটোপসাইলিনাস্টেফানোসার্সিডে clade inc. রোপালোপসাইলিডি , স্টিনোফথালমিডি , হাইস্ট্রিকোপসিলিডি ChimaeropsyllidaePulicidae (inc. the cat flea , bubonic প্লেগের ভেক্টর )Ceratophyllomorpha (inc. the Ceratophyllidae , যেমন বিস্তৃত moorhen flea )

শ্রেণীবিন্যাস [ সম্পাদনা ]

2023 সাল পর্যন্ত , সিফোনাপ্টেরার অর্ডারের মধ্যে 21টি স্বীকৃত পরিবার রয়েছে, যার মধ্যে 3টি বিলুপ্ত। [২৭] উপরন্তু, কিছু গবেষক পরামর্শ দিয়েছেন যে স্টেনোপোনিইনি সাবফ্যামিলিকে তার নিজের পরিবারে উন্নীত করা উচিত ( Stenoponiidae )। [২৮]

হোস্টের সাথে সম্পর্ক [ সম্পাদনা ]

মানুষের মধ্যে মাছি কামড়।

মাছিরা কুকুর, বিড়াল, খরগোশ, কাঠবিড়ালি, ফেরেট, ইঁদুর, ইঁদুর, পাখি এবং কখনও কখনও মানুষ সহ বিভিন্ন ধরণের উষ্ণ রক্তের মেরুদণ্ডী প্রাণীকে খাওয়ায়। Fleas সাধারণত একটি হোস্ট প্রজাতি বা প্রজাতির গোষ্ঠীতে বিশেষজ্ঞ হয়, কিন্তু প্রায়ই খাওয়াতে পারে কিন্তু অন্য প্রজাতিতে পুনরুৎপাদন করতে পারে না। Ceratophyllus gallinae হাঁস-মুরগির পাশাপাশি বন্য পাখিকেও প্রভাবিত করে। [২৯]সেইসাথে ফ্লীসের মূল হোস্টের সাথে সম্ভাব্য হোস্টের সম্পর্কিততার মাত্রা, এটি দেখানো হয়েছে যে এভিয়ান ফ্লিস যেগুলি হোস্টের একটি পরিসরকে শোষণ করে, শুধুমাত্র কম প্রতিরোধ ক্ষমতা সম্পন্ন পরজীবী প্রজাতি। সাধারণভাবে, হোস্ট প্রজাতির আকার হ্রাসের সাথে সাথে হোস্টের নির্দিষ্টতা হ্রাস পায়। আরেকটি কারণ হল হোস্ট প্রজাতি পরিবর্তন করার জন্য মাছির জন্য উপলব্ধ সুযোগ; এটি ঔপনিবেশিকভাবে বাসা বাঁধার পাখিদের মধ্যে ছোট, যেখানে মাছি কখনোই অন্য প্রজাতির মুখোমুখি হতে পারে না, এটি নির্জন পাখিদের তুলনায়। একটি বড়, দীর্ঘজীবী হোস্ট একটি স্থিতিশীল পরিবেশ প্রদান করে যা হোস্ট-নির্দিষ্ট পরজীবীদের পক্ষে থাকে। [৩০]

যদিও কুকুরের মাছি ( Ctenocephalides canis Curtis, 1826) এবং বিড়াল fleas ( Ctenocephalides felis ) নামে প্রজাতি রয়েছে , যদিও fleas সবসময় কঠোরভাবে প্রজাতি-নির্দিষ্ট নয়। ভার্জিনিয়ায় একটি গবেষণায় 29টি কুকুরের 244টি মাছি পরীক্ষা করা হয়েছে: সবগুলোই বিড়ালের মাছি। 70 বছরেরও বেশি সময় ধরে ভার্জিনিয়ায় কুকুরের মাছি পাওয়া যায়নি, এবং এমনকি মার্কিন যুক্তরাষ্ট্রেও নাও হতে পারে, তাই কুকুরের মাছি সম্ভবত একটি বিড়াল মাছি ( Ctenocephalides felis )। [৩১] [৩২]

মানুষের লোমহীনতার একটি তত্ত্ব হল যে চুলের ক্ষতি মানুষকে তাদের মাছি এবং অন্যান্য ইক্টোপ্যারাসাইটের বোঝা কমাতে সাহায্য করেছিল। [৩৩]

কামড়ের সরাসরি প্রভাব [ সম্পাদনা ]

মূল নিবন্ধ: 

পুলিকোসিস

মানুষের পা জিগার মাছি, টুঙ্গা পেনেট্রান্স দ্বারা আক্রান্ত

অনেক প্রজাতির মধ্যে, fleas প্রধানত তাদের হোস্টদের জন্য একটি উপদ্রব, যার ফলে একটি চুলকানি সংবেদন হয় যার ফলে হোস্ট কামড়, খোঁচা বা আঁচড় দিয়ে কীটপতঙ্গ অপসারণের চেষ্টা করে। Fleas শুধুমাত্র বিরক্তিকর একটি উৎস নয়, তবে. মাছির কামড়ের ফলে প্রতিটি কামড়ের স্থানে এপিডার্মিসের উপর একটি সামান্য উত্থিত, ফোলা, বিরক্তিকর নোডিউল তৈরি হয়, যার কেন্দ্রে একটি একক খোঁচা বিন্দু থাকে, মশার কামড়ের মতো। [৩৪] : 126  এটি ফ্লি অ্যালার্জি ডার্মাটাইটিস নামক একজিমেটাস চুলকানিযুক্ত ত্বকের রোগের কারণ হতে পারে , যা কুকুর এবং বিড়াল সহ অনেক হোস্ট প্রজাতির মধ্যে সাধারণ। [২৯]কামড়গুলি প্রায়শই গুচ্ছ বা দুটি কামড়ের লাইনে প্রদর্শিত হয় এবং কয়েক সপ্তাহ পর্যন্ত চুলকানি এবং স্ফীত থাকতে পারে। পশুর ঘন ঘন আঁচড় ও কামড়ানোর ফলে মাছি গৌণ চুলের ক্ষতি হতে পারে। তারা চরম ক্ষেত্রে রক্তাল্পতা সৃষ্টি করতে পারে । [৩৪] : ১২৬ 

ভেক্টর হিসেবে [ সম্পাদনা ]

মাছি মানুষ এবং অন্যান্য প্রাণীর ভাইরাল , ব্যাকটেরিয়া এবং রিকেটসিয়াল রোগের পাশাপাশি প্রোটোজোয়ান এবং হেলমিন্থ পরজীবীর জন্য ভেক্টর । [৩৫] মাছি দ্বারা বাহিত ব্যাকটেরিয়াজনিত রোগের মধ্যে রয়েছে মুরিন বা স্থানীয় টাইফাস [৩৪] : ১২৪  এবং বুবোনিক প্লেগ । [৩৬] ফ্লিস রিকেটসিয়া টাইফি , রিকেটসিয়া ফেলিস , বার্টোনেলা হেনসেলে এবং মাইক্সোমাটোসিস ভাইরাস সংক্রমণ করতে পারে। [35] : 73  তারা Hymenolepiasis বহন করতে পারে টেপওয়ার্ম [৩৭] এবং ট্রাইপানোসোম প্রোটোজোয়ান। [৩৫] : 74  চিগো ফ্লি বা জিগার ( টুঙ্গা পেনেট্রান্স ) টুঙ্গিয়াসিস রোগের কারণ , যা সারা বিশ্বে একটি প্রধান জনস্বাস্থ্য সমস্যা। [৩৮] নির্দিষ্ট স্তন্যপায়ী প্রাণীদের উপর পরজীবী হিসাবে বিশেষায়িত ফ্লিস অন্যান্য স্তন্যপায়ী প্রাণীকে হোস্ট হিসাবে ব্যবহার করতে পারে; এইভাবে, মানুষ বিড়াল এবং কুকুর fleas দ্বারা কামড় হতে পারে. [৩৯]

মানুষের সাথে সম্পর্ক [ সম্পাদনা ]

সাহিত্য ও শিল্পে [ সম্পাদনা ]

কবিতা, সাহিত্য, সঙ্গীত ও শিল্পকলায় আবির্ভূত হয়েছে মাছি; এর মধ্যে রয়েছে রবার্ট হুকের 1665 সালে প্রকাশিত তার অগ্রণী বই মাইক্রোগ্রাফিয়াতে মাইক্রোস্কোপের নীচে একটি মাছির অঙ্কন , [40] ডনে এবং জোনাথন সুইফটের কবিতা , জর্জিও ফেদেরিকো ঘেডিনি এবং মডেস্ট মুসর্গস্কির সঙ্গীতের কাজ , জর্জেস ফেইডোর একটি নাটক , একটি চার্লি চ্যাপলিনের ছবি , এবং জিউসেপ্পে ক্রেসপি , জিওভানি বাতিস্তা পিয়াজেটা এবং জর্জেস ডি লা ট্যুরের মতো শিল্পীদের আঁকা ছবি । [৪১]

1633 সালে তার মৃত্যুর পর প্রকাশিত জন ডনের কামোত্তেজক আধিভৌতিক কবিতা ” দ্য ফ্লি ” একটি মাছির অহংকার ব্যবহার করে , যা পুরুষ বক্তা এবং তার মহিলা প্রেমিকের রক্ত ​​চুষে নিয়েছে, তাদের যৌন সম্পর্কের জন্য একটি বর্ধিত রূপক হিসাবে। স্পিকার একজন মহিলাকে তার সাথে ঘুমানোর জন্য বোঝানোর চেষ্টা করেন, এই যুক্তি দিয়ে যে যদি তাদের রক্তের মাছিতে মিশে যাওয়া নির্দোষ হয়, তবে যৌনতাও হবে। [৪২]

কমিক কবিতা সিফোনাপ্টেরা 1915 সালে গণিতবিদ অগাস্টাস ডি মরগান লিখেছিলেন , এটি কখনও বড় এবং কখনও ছোট মাছি দিয়ে তৈরি পরজীবীতার একটি অসীম শৃঙ্খল বর্ণনা করে। [৪৩]

মাছি সার্কাস [ সম্পাদনা ]

মূল নিবন্ধ: 

ফ্লি সার্কাস

ফ্লি সার্কাস ঊনবিংশ শতাব্দীর দর্শকদের বিনোদন দিয়েছিল। 1830 সালের পর থেকে ইউরোপে অত্যন্ত জনপ্রিয় এই সার্কাসে মানুষের সাজে বা ছোট গাড়ি, রথ , রোলার বা কামান টেনে আনা মাছিদের বৈশিষ্ট্যযুক্ত । এই ডিভাইসগুলি মূলত ঘড়ি প্রস্তুতকারক বা জুয়েলার্স দ্বারা তৈরি করা হয়েছিল ক্ষুদ্রকরণে তাদের দক্ষতা দেখানোর জন্য। একজন “অধ্যাপক” নামে একজন রিংমাস্টার দ্রুত সার্কাস প্যাটারের সাথে তাদের পারফরম্যান্সের সাথে ছিলেন। [৪৪] [৪৫]

একটি ফ্লি সার্কাস : 1886 সালে সেন্ট নিকোলাস ম্যাগাজিনে সিএফ হোল্ডারের একটি নিবন্ধ থেকে জেজি ফ্রান্সিস দ্বারা খোদাই করা “দ্য গো-অ্যাস-ইউ-প্লিজ রেস, যেমন একটি ম্যাগনিফাইং গ্লাসের মাধ্যমে দেখা গেছে”

প্লেগের বাহক [ সম্পাদনা ]

1665 সালে লন্ডনের গ্রেট প্লেগ 100,000 লোককে হত্যা করেছিল।

ওরিয়েন্টাল ইঁদুর মাছি , জেনোপসাইলা চিওপিস , কোকোব্যাসিলাস ইয়ারসিনিয়া পেস্টিস বহন করতে পারে । সংক্রামিত মাছিরা এই ব্যাকটেরিয়ামের ইঁদুর ভেক্টরকে খায়, যেমন কালো ইঁদুর , রাটাস রাটাস , এবং তারপরে মানুষের জনসংখ্যাকে প্লেগ দিয়ে সংক্রমিত করে , যেমনটি প্রাচীন কাল থেকে বারবার ঘটেছে, যেমনটি 541-542 সালের প্লেগ অফ জাস্টিনিয়ানে হয়েছিল। [৪৬] প্রাদুর্ভাবে 1346 এবং 1671 সালের মধ্যে ইউরোপ জুড়ে 200 মিলিয়ন লোকের মৃত্যু হয়েছিল। [47] 1346 এবং 1353 সালের মধ্যে ব্ল্যাক ডেথ মহামারী সম্ভবত ইউরোপের জনসংখ্যার এক তৃতীয়াংশেরও বেশি লোককে হত্যা করেছিল। [৪৮]

যেহেতু fleas প্লেগ বহন করে, তারা সেবাকে জৈবিক অস্ত্র হিসেবে দেখেছে । দ্বিতীয় বিশ্বযুদ্ধের সময় , জাপানি সেনাবাহিনী চীনে Y. pestis দ্বারা আক্রান্ত মাছি ফেলে দেয় । বুবোনিক এবং সেপ্টিকেমিক প্লেগ হল প্লেগের সবচেয়ে সম্ভাব্য রূপ যা একটি বায়োটেররিজম আক্রমণের ফলে ছড়িয়ে পড়বে যা ভেক্টর হিসাবে fleas ব্যবহার করে। [৪৯]

রথচাইল্ড সংগ্রহ [ সম্পাদনা ]

ব্যাঙ্কার চার্লস রথচাইল্ড তার বেশিরভাগ সময় কীটতত্ত্বে ব্যয় করেছিলেন, লন্ডনের প্রাকৃতিক ইতিহাস জাদুঘরে রথচাইল্ড সংগ্রহে এখন ফ্লিসের একটি বড় সংগ্রহ তৈরি করেছেন । তিনি 1903 সালে প্লেগ ভেক্টর ফ্লী, জেনোপসাইলা চিওপিস , যা প্রাচ্য ইঁদুরের মাছি নামেও পরিচিত, আবিষ্কার ও নামকরণ করেন। এবং এ পর্যন্ত বর্ণিত উপ-প্রজাতি), তিনি প্রায় 500 প্রজাতি এবং সিফোনাপটেরার উপ-প্রজাতি বর্ণনা করেছেন। এই আগ্রহে তাকে অনুসরণ করেছিলেন তার মেয়ে মরিয়ম রথসচাইল্ড, যিনি সাতটি খণ্ডে পোকামাকড়ের তার বিশাল সংগ্রহ তালিকাভুক্ত করতে সাহায্য করেছিলেন। [৫১] [৫২]

মাছি চিকিত্সা [ সম্পাদনা ]

মূল নিবন্ধ: 

মাছি চিকিত্সা

Fleas একটি উল্লেখযোগ্য অর্থনৈতিক প্রভাব আছে. শুধুমাত্র আমেরিকাতেই, প্রায় $2.8 বিলিয়ন বার্ষিক ফ্লী-সম্পর্কিত ভেটেরিনারি বিলের জন্য এবং আরও $1.6 বিলিয়ন বার্ষিক পোষা পোষা প্রাণীদের সাথে ফ্লি চিকিৎসার জন্য ব্যয় করা হয়। চার বিলিয়ন ডলার বার্ষিক প্রেসক্রিপশন ফ্লি চিকিত্সার জন্য এবং 348 মিলিয়ন ডলার মাছি কীটপতঙ্গ নিয়ন্ত্রণের জন্য ব্যয় করা হয়। [১৩]

আরও দেখুন [ সম্পাদনা ]

তথ্যসূত্র [ সম্পাদনা ]

  1. ^ঝাঁপ দাও:b “Wiley: The Insects: An Outline of Entomology, 5th Edition – Gullan, PJ; Cranston, PS” wiley.com। সংগৃহীত 11 নভেম্বর 2016.
  2. ^ টেলর, শন ডি.; ক্রুজ, ক্যাথারিনা ডিটমার দে লা; পোর্টার, মেগান এল.; হোয়াইটিং, মাইকেল এফ. (মে 2005)। “মেকোপ্টেরা এবং সিফোনাপটেরা থেকে দীর্ঘ-তরঙ্গদৈর্ঘ্যের অপসিনের বৈশিষ্ট্য: একটি মাছি কি দেখে?” আণবিক জীববিজ্ঞান এবং বিবর্তন । 22 (5): 1165-1174। doi : 10.1093/molbev/msi110 । আইএসএসএন 0737-4038 । পিএমআইডি 15703237 ।  
  3. ^ঝাঁপ দাও:b Fleas. কোহলার, পিজি; Oi, FM মুদ্রিত জুলাই 1993, সংশোধিত ফেব্রুয়ারি 2003।ফ্লোরিডা বিশ্ববিদ্যালয়
  4. “অর্ডার সিফোনাপটেরা – ফ্লিস” । BugGuide.Net । সংগৃহীত 11 নভেম্বর 2016 .
  5. ^ঝাঁপ দাও:d Crosby, JT“মাছির জীবন চক্র কি?” ভেটেরিনারিপ্যারাসাইট হোম সম্পর্কে. সংগৃহীত 4 নভেম্বর 2016.
  6. “মাছি এবং টিক্স: Fleas সম্পর্কে তথ্য” । মাইপেট _ Merck পশু স্বাস্থ্য . 21 মার্চ 2022 পুনরুদ্ধার করা হয়েছে ।
  7. ^ঝাঁপ দাও:b “পা থেকে মাছি লাফ দেয়, হাঁটু নয়”। বিজ্ঞানের খবর। 2 অক্টোবর 2011। সংগৃহীত 11 নভেম্বর 2016.
  8. ^ঝাঁপ দাও:d Burrows, M. (2009)। “হাউ ফ্লিস জাম্প”। পরীক্ষামূলক জীববিজ্ঞানের জার্নাল। 212(18): 2881–2883। doi: 10.1242/jeb.022855 । পিএমআইডি19717668 
  9. ^ঝাঁপ দাও:b Krasnov, Boris R. (2008)। Fleas এর কার্যকরী এবং বিবর্তনীয় বাস্তুবিদ্যা: পরিবেশগত পরজীবীবিদ্যার জন্য একটি মডেল । ক্যামব্রিজ ইউনিভার্সিটি প্রেস. পৃষ্ঠা 44-54। আইএসবিএন 978-1-139-47266-1.
  10. ^ ক্রাসনভ, বরিস আর. (2008)। Fleas এর কার্যকরী এবং বিবর্তনীয় বাস্তুবিদ্যা: পরিবেশগত পরজীবীবিদ্যার জন্য একটি মডেল । ক্যামব্রিজ ইউনিভার্সিটি প্রেস. পৃষ্ঠা 64-67। আইএসবিএন 978-1-139-47266-1.
  11. ^ সিলভারম্যান, জুলস; আপেল, আর্থার (মার্চ 1994)। “প্রাপ্তবয়স্ক বিড়াল ফ্লি (সিফোনাপ্টেরা: পুলিসিডে) লার্ভা পুষ্টি সম্পর্কিত হোস্ট রক্তের প্রোটিন নিঃসরণ” (পিডিএফ) । মেডিকেল এনটোমোলজি জার্নাল । 31 (2): 265–271। doi : 10.1093/jmedent/ 31.2.265 পিএমআইডি 7910638 । সংগৃহীত 18 জুলাই 2014 .  
  12. ^ শ্রাইক, জে. (2006)। “কটিনোসেফালাইডস ফেলিস (সিফোনাপ্টেরা: পুলিসিডে) লার্ভা বিভিন্ন মানের খাদ্যের প্যাচগুলিতে ব্যয় করে সময়” । পরিবেশগত কীটতত্ত্ব । 35 (2): 401–404। doi : 10.1603/0046-225x- 35.2.401
  13. ^ঝাঁপ দাও:c Hinkle, Nancy C.; Koehler, Philip G. (2008)। “বিড়ালের মাছি, স্টিনোসেফালাইডস ফেলিস ফেলিস বোচে (সিফোনাপ্টেরা: পুলিসিডে)”। ক্যাপিনারায়, জন এল. (সম্পাদনা)। কীটতত্ত্বের এনসাইক্লোপিডিয়া। স্প্রিংগার নেদারল্যান্ডস। পৃ. 797-801। doi:10.1007/978-1-4020-6359-6_536 আইএসবিএন 978-1-4020-6242-1.
  14. “ফ্লি লাইফ সাইকেল: ডিম, লার্ভা, ইত্যাদি” । Orkin.com । 11 এপ্রিল 2018 । সংগৃহীত 13 সেপ্টেম্বর 2019 ।
  15. ^ কোহলার, পিজি; পেরেইরা, আরএম; ডিকলারো, JW “Fleas” । Edis.ifas.ufl.edu । সংগৃহীত 11 নভেম্বর 2016 .
  16. ^ঝাঁপ দাও:b “একটি মাছির জীবনকাল কত?” প্রতিদিনের রহস্য: কংগ্রেসের লাইব্রেরি থেকে মজার বিজ্ঞানের তথ্য। Loc.gov. 2 জুলাই 2013। সংগৃহীত 11 নভেম্বর 2016.
  17. ^ঝাঁপ দাও:b Piper, Ross(2007),Extraordinary Animals: An Encyclopedia of Curious and Unusual Animals,Greenwood Press.
  18. ^ গিলট, সেড্রিক (2005)। কীটতত্ত্ব । স্প্রিংগার সায়েন্স অ্যান্ড বিজনেস মিডিয়া। পি. 97. আইএসবিএন 978-1-4020-3183-0.
  19. ^ মেয়ার, জন আর. (28 মার্চ 2016)। “সিফোনাপটার” । উত্তর ক্যারোলিনা স্টেট ইউনিভার্সিটি । 3 ডিসেম্বর 2016 সংগৃহীত ।
  20. ^ঝাঁপ দাও:c হোয়াইটিং, মাইকেল এফ.; হোয়াইটিং, অ্যালিসন এস.; হ্যাস্ট্রিটার, মাইকেল ডব্লিউ.; ডিটমার, ক্যাথারিনা (2008)। “ফ্লাসের একটি আণবিক ফাইলোজেনি (ইনসেক্টা: সিফোনাপটেরা): উৎপত্তি এবং হোস্ট অ্যাসোসিয়েশন”। ক্ল্যাডিস্টিকস24(5): 677–707। CiteSeerX 10.1.1.731.5211 _ doi:10.1111/j.1096-0031.2008.00211.x S2CID33808144  
  21. হোয়াইটিং, মাইকেল এফ. (2002)। “মেকোপ্টেরা হল প্যারাফাইলেটিক: মেকোপ্টেরা এবং সিফোনপ্টেরার একাধিক জিন এবং ফাইলোজেনি” । জুলজিকা স্ক্রিপ্ট । 31 (1): 93-104। doi : 10.1046 /j.0300-3256.2001.00095.x S2CID 56100681 । 5 জানুয়ারী 2013 তারিখে মূল থেকে আর্কাইভ করা । 
  22. ^ উইগম্যান, ব্রায়ান; ইয়েটস, ডেভিড কে. (2012)। মাছির বিবর্তনীয় জীববিজ্ঞান । কলম্বিয়া ইউনিভার্সিটি প্রেস। পি. 5. আইএসবিএন 978-0-231-50170-5সম্প্রতি, সিফোনাপটেরা এবং মেকোপ্টেরার মধ্যে একটি ঘনিষ্ঠ সম্পর্ক অঙ্গসংস্থানবিদ্যা (বিলিনস্কি এট আল। 1998) এবং আণবিক ডেটা (হোয়াইটিং 2002) এর মাধ্যমে দৃঢ়ভাবে প্রমাণিত হয়েছে, মেকোপ্টেরা প্যারাফাইলেটিক রেন্ডার করেছে, কিন্তু মেকোপ্টেরা এবং সিফোনেপ্টেরা মোনোফাই সহ ক্লেড তৈরি করেছে।
  23. ^ঝাঁপ দাও:c তিহেলকা, এরিক; Giacomelli, Mattia; হুয়াং, ডি-ইং; পিসানি, ডেভিড; ডনোগু, ফিলিপ সিজে; কাই, চেন-ইয়াং (21 ডিসেম্বর 2020)। ” Fleasহল পরজীবী বিচ্ছু” প্যালিওএন্টোমোলজি। 3(6): 641–653–641–653। doi:10.11646/ palaeoentomology.3.6.16 hdl: 1983/8d3c12c6-529c-4754-b59d-3abf88a32fc9 । আইএসএসএন2624-2834। S2CID234423213  
  24. ^ হুয়াং, ডি.; এঙ্গেল, এমএস; Cai, C.; উ, এইচ.; Nel, A. (8 মার্চ 2012)। “চীনের মেসোজোয়িক যুগের বিভিন্ন ট্রানজিশনাল জায়ান্ট ফ্লিস”। প্রকৃতি । 483 (7388): 201-204। বিবিকোড : 2012Natur.483..201H । doi : 10.1038/Nature10839 । পিএমআইডি 22388812 । S2CID 4415855 ।  
  25. ^ ঝু, কিয়ুন; হ্যাস্ট্রিটার, মাইকেল; হোয়াইটিং, মাইকেল; ডিটমার, ক্যাথরিনা (সেপ্টেম্বর 2015)। Fleas (Siphonaptera) হল ক্রিটেসিয়াস, এবং থেরিয়া দিয়ে বিবর্তিত”। আণবিক ফাইলজেনেটিক্স এবং বিবর্তন । 90 : 129-139। bioRxiv 10.1101/014308 । doi : 10.1016 /j.ympev.2015.04.027 পিএমআইডি 25987528 । S2CID 13433327 ।   
  26. ^ঝাঁপ দাও:b Krasnov, Boris R. (2008)। Fleas এর কার্যকরী এবং বিবর্তনীয় বাস্তুবিদ্যা: পরিবেশগত পরজীবীবিদ্যার জন্য একটি মডেল । ক্যামব্রিজ ইউনিভার্সিটি প্রেস. পৃষ্ঠা 3-9। আইএসবিএন 978-1-139-47266-1.
  27. “সিফোনাপটেরা” । জীবনের ক্যাটালগ । 18 জুলাই 2023 সংগৃহীত ।
  28. ^ জুরিতা, এ.; ক্যালেজন, আর.; ডি রোজাস, এম.; গোমেজ লোপেজ, এমএস; Cutillas, C. (ডিসেম্বর 2015)। “কানারি দ্বীপপুঞ্জ থেকে স্টেনোপোনিয়া ট্রিপেক্টিনাটা ট্রিপেক্টিনাটা (সিফোনাপ্টেরা: স্টিনোফথালমিডি: স্টেনোপোনিনাই) এর আণবিক অধ্যয়ন: শ্রেণীবিন্যাস এবং ফাইলোজেনি”। কীটতত্ত্ব গবেষণার বুলেটিন । 105 (6): 704–711। doi : 10.1017/s0007485315000656 । পিএমআইডি 26282009 । S2CID 35756267 ।  
  29. ^ঝাঁপ দাও:b Krasnov, Boris R. (2008)। Fleas এর কার্যকরী এবং বিবর্তনীয় বাস্তুবিদ্যা: পরিবেশগত পরজীবীবিদ্যার জন্য একটি মডেল । ক্যামব্রিজ ইউনিভার্সিটি প্রেস. পৃ. 72-74। আইএসবিএন 978-1-139-47266-1.
  30. পলিন, রবার্ট (2011)। পরজীবীদের বিবর্তনীয় পরিবেশবিদ্যা (দ্বিতীয় সংস্করণ)। প্রিন্সটন ইউনিভার্সিটি প্রেস। পি. 68. আইএসবিএন 978-1-4008-4080-9.
  31. ^ একারলিন, রাল্ফ পি. (2011)। “আপনার কুকুরের কি ধরনের মাছি আছে?” (পিডিএফ) । ব্যানিস্টেরিয়া । 37 : 42-43।
  32. ^ মার্চিয়নডো, এএ; হোল্ডসওয়ার্থ, PA; সবুজ, পি.; ব্ল্যাগবার্ন, বিএল; জ্যাকবস, ডিই (30 এপ্রিল 2007)। “ওয়ার্ল্ড অ্যাসোসিয়েশন ফর দ্য অ্যাডভান্সমেন্ট অফ ভেটেরিনারি প্যারাসিটোলজি নির্দেশিকাগুলি কুকুর এবং বিড়ালের উপর মাছি এবং টিক সংক্রমণের চিকিত্সা, প্রতিরোধ এবং নিয়ন্ত্রণের জন্য পরজীবীনাশকের কার্যকারিতা মূল্যায়নের জন্য” । ভেটেরিনারি প্যারাসিটোলজি । 145 (3): 332–344। doi : 10.1016 /j.vetpar.2006.10.028 আইএসএসএন 0304-4017 । পিএমআইডি 17140735 ।  
  33. ^ রান্টালা, এমজে (2006)। ” হোমো সেপিয়েন্সে নগ্নতার বিবর্তন ” (পিডিএফ) । প্রাণিবিদ্যা জার্নাল । 273 : 1-7। doi : 10.1111 /j.1469-7998.2007.00295.x আইএসএসএন 0952-8369 ।  
  34. ^ঝাঁপ দাও:c মুলেন, গ্যারি আর.; মুলেন, গ্যারি; Durden, Lance (2009)। মেডিকেল এবং ভেটেরিনারি কীটতত্ত্ব । একাডেমিক প্রেস। পি. 637.আইএসবিএন 978-0-12-372500-4.
  35. ^ঝাঁপ দাও:c Krasnov, Boris R. (2008)। fleas এর কার্যকরী এবং বিবর্তনীয় বাস্তুবিদ্যা: পরিবেশগত পরজীবীবিদ্যার জন্য একটি মডেল । ক্যামব্রিজ ইউনিভার্সিটি প্রেস. পি. 593.আইএসবিএন 978-0-521-88277-4.
  36. ^ শেরম্যান, ডেভিড এম. (2002)। গ্লোবাল ভিলেজে পশুপালন করা: আন্তর্জাতিক ভেটেরিনারি মেডিসিনের একটি গাইড । উইলি-ব্ল্যাকওয়েল। পি. 209. আইএসবিএন 978-0-683-18051-0.
  37. ^ স্টেইন, আর্নস্ট (2003)। অ্যানোরেক্টাল এবং কোলন রোগ: প্রক্টোলজির পাঠ্যপুস্তক এবং রঙের অ্যাটলাস । স্প্রিংগার। পি. 478. আইএসবিএন 978-3-540-43039-1.
  38. ^ স্মিথ, ডারভিন স্কট। “টুঙ্গিয়াসিস” । মেডস্কেপ । সংগৃহীত 11 নভেম্বর 2016 .
  39. ^ বার্নস, ইথনে (2007)। রোগ এবং মানব বিবর্তন । ইউএনএম প্রেস। পি. 253. আইএসবিএন 978-0-8263-3066-6.
  40. ^ নেরি, জেনিস (2008)। “পর্যবেক্ষণ এবং চিত্রের মধ্যে: রবার্ট হুকের মাইক্রোগ্রাফিয়ায় পোকামাকড়ের প্রতিনিধিত্ব”। ও’ম্যালি, থেরেসে; মেয়ার্স, অ্যামি আরডব্লিউ (সম্পাদনা)। প্রাকৃতিক ইতিহাসের শিল্প । ন্যাশনাল গ্যালারি অফ আর্ট। পৃষ্ঠা 83-107। আইএসবিএন 978-0-300-16024-6.
  41. ^ রনকাল্লি, অ্যামিসি আর. (জুন 2004)। “লা স্টোরিয়া ডেলা পালসে নেল’আর্টে ই নেল্লা লেটারতুরা” [শিল্প ও সাহিত্যে ফ্লীসের ইতিহাস]। প্যারাসিটোলজিয়া (ইতালীয় ভাষায়)। 46 (1): 15-18। পিএমআইডি 15305680 । 2009 সংস্করণটিও দেখুন ।
  42. ^ ব্ল্যাক, জোসেফ, এড। (2010)। ব্রিটিশ সাহিত্যের ব্রডভিউ অ্যান্থোলজি, ভলিউম 2 (2য় সংস্করণ)। ব্রডভিউ প্রেস। আইএসবিএন 978-1-55481-290-5.
  43. “অগাস্টাস ডি মরগানের লেখা প্রজেক্ট গুটেনবার্গ ইবুক অফ এ বাজেট অফ প্যারাডক্স, ভলিউম II (অফ II)” । gutenberg.org . 30 অক্টোবর 2019 সংগৃহীত ।
  44. ^ Schmäschke, R. (1 এপ্রিল 2000)। “সাংস্কৃতিক ইতিহাসে মাছি এবং এর নিয়ন্ত্রণের প্রথম প্রভাব”। বার্লিনার ও মুনচেনার টাইরার্জটলিচে ওচেনস্ক্রিফ্ট । 113 (4): 152-160। আইএসএসএন 0005-9366 । পিএমআইডি 10816916 ।  
  45. “ফ্লি সার্কাসের উত্থান এবং মৃত্যু” । প্রাকৃতিক ইতিহাস । বিবিসি রেডিও 4 । সংগৃহীত 2 নভেম্বর 2016 .
  46. ^ রোজেন, উইলিয়াম (2007)। জাস্টিনিয়ানস ফ্লি: প্লেগ, সাম্রাজ্য এবং ইউরোপের জন্ম । ভাইকিং প্রাপ্তবয়স্ক। পি. 3 _ আইএসবিএন 978-0-670-03855-8.
  47. ^ হেইস, জেএন (1998)। রোগের বোঝা: পশ্চিমা ইতিহাসে মহামারী এবং মানব প্রতিক্রিয়া । রাটগার্স ইউনিভার্সিটি প্রেস। pp.  58 এবং নিম্নলিখিত। আইএসবিএন 978-0-8135-2528-0.
  48. ^ অস্টিন আলচন, সুজান (2003)। জমিতে একটি কীটপতঙ্গ: বিশ্বব্যাপী দৃষ্টিকোণে নতুন বিশ্ব মহামারী । ইউনিভার্সিটি অফ নিউ মেক্সিকো প্রেস। পি. 21. আইএসবিএন 978-0-8263-2871-7.
  49. ^ বসসি, পি.; ইত্যাদি (2004)। “প্লেগ এবং জৈব সন্ত্রাস-সম্পর্কিত প্লেগের ক্লিনিকাল ব্যবস্থাপনার জন্য বিচ্যাট নির্দেশিকা” । ইউরো নজরদারি 9 (12): ধারা 12।
  50. “চার্লস রথসচাইল্ড” । বন্যপ্রাণী ট্রাস্ট সংগৃহীত 1 নভেম্বর 2016 .
  51. ^ সুলিভান, ওয়াল্টার (10 এপ্রিল 1984)। “মিরিয়াম রথসচাইল্ড টকস অফ ফ্লিস” । নিউ ইয়র্ক টাইমস । সংগৃহীত 1 নভেম্বর 2016 .
  52. “সিফোনাপটের সংগ্রহ” । ন্যাচারাল হিস্ট্রি মিউজিয়াম, লন্ডন । সংগৃহীত 1 নভেম্বর 2016 .
লুকানvteমাছি -বাহিত রোগ
ব্যাকটেরিয়া সংক্রমণ
(সমস্ত G- )
মুরিন টাইফাসলাইম রোগপাথুরে পর্বতের তিলকিত জ্বরে আক্রান্তEhrlichiosisরিল্যাপসিং জ্বরটুলারেমিয়া
ভাইরাস ঘটিত সংক্রমণটিক-জনিত মেনিনগোয়েনসেফালাইটিসকলোরাডো টিক জ্বরক্রিমিয়ান-কঙ্গো হেমোরেজিক জ্বরমাইক্সোমাটোসিস
প্রোটোজোয়ান সংক্রমণবেবেসিওসিসসাইটোক্সজুনোসিস
হেলমিন্থহাইমেনোলেপিয়াসিস টেপওয়ার্ম
ভেক্টর
প্রদর্শনvteপোকা আদেশ
প্রদর্শনvteবর্তমান মেকোপ্টেরা এবং সিফোনপ্টেরা পরিবার
ট্যাক্সন শনাক্তকারীউইকিডাটা : Q388162উইকিপ্রজাতি : সিফোনপ্টেরাADW : সাইফোনাপ্টেরাএএফডি : সিফোনপ্টেরাবোল্ড : 91399বাগগাইড : 7040CoL : 43Jইওএল : 1062EPPO : 1SIPHOপ্রাণীজগত ইউরোপ : 12219প্রাণীজগত ইউরোপিয়া (নতুন) : e2381c13-82d1-4288-b3e4-b65953680dbbজীবাশ্ম : 137071জিবিআইএফ : 1366iNaturalist : 83204IRMNG : 11386আইটিআইএস : 152732NBN : NBNSYS0000161002NCBI : 7509NZOR: b0ad586a-2f89-43f0-90a0-a8b32b2f2323কৃমি : 991408
কর্তৃপক্ষ নিয়ন্ত্রণ ডাটাবেস : জাতীয়স্পেনফ্রান্সBnF ডেটাজার্মানিইজরায়েলযুক্তরাষ্ট্রজাপানচেক প্রজাতন্ত্র

বিভাগ :


Insects

Insects (from Latin insectum) are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body (headthorax and abdomen), three pairs of jointed legscompound eyes and one pair of antennae. Their blood is not totally contained in vessels; some circulates in an open cavity known as the haemocoel. Insects are the most diverse group of animals; they include more than a million described species and represent more than half of all known living organisms.[1][2] The total number of extant species is estimated at between six and ten million;[1][3][4] potentially over 90% of the animal life forms on Earth are insects.[4][5]

Nearly all insects hatch from eggs. Insect growth is constrained by the inelastic exoskeleton and development involves a series of molts. The immature stages often differ from the adults in structure, habit and habitat, and can include a usually immobile pupal stage in those groups that undergo four-stage metamorphosis. Insects that undergo three-stage metamorphosis lack a pupal stage and adults develop through a series of nymphal stages.[6] The higher level relationship of the insects is unclear. Fossilized insects of enormous size have been found from the Paleozoic Era, including giant dragonflies with wingspans of 55 to 70 cm (22 to 28 in). The most diverse insect groups appear to have coevolved with flowering plants.

Adult insects typically move about by walking, flying, or sometimes swimming. As it allows for rapid yet stable movement, many insects adopt a tripedal gait in which they walk with their legs touching the ground in alternating triangles, composed of the front and rear on one side with the middle on the other side. Insects are the only invertebrate group with members able to achieve sustained powered flight, and all flying insects derive from one common ancestor. Many insects spend at least part of their lives under water, with larval adaptations that include gills, and some adult insects are aquatic and have adaptations for swimming. Some species, such as water striders, are capable of walking on the surface of water. Insects are mostly solitary, but some, such as certain beesants and termites, are social and live in large, well-organized colonies. Some insects, such as earwigs, show maternal care, guarding their eggs and young. Insects can communicate with each other in a variety of ways. Male moths can sense the pheromones of female moths over great distances. Other species communicate with sounds: crickets stridulate, or rub their wings together, to attract a mate and repel other males. Lampyrid beetles communicate with light.

Humans regard certain insects as pests, and attempt to control them using insecticides, and a host of other techniques. Some insects damage crops by feeding on sap, leaves, fruits, or wood. Some species are parasitic, and may vector diseases. Some insects perform complex ecological roles; blow-flies, for example, help consume carrion but also spread diseases. Insect pollinators are essential to the life cycle of many flowering plant species on which most organisms, including humans, are at least partly dependent; without them, the terrestrial portion of the biosphere would be devastated.[7] Many insects are considered ecologically beneficial as predators and a few provide direct economic benefit. Silkworms produce silk and honey bees produce honey, and both have been domesticated by humans. Insects are consumed as food in 80% of the world’s nations, by people in roughly 3000 ethnic groups.[8][9] Human activities also have effects on insect biodiversity.

Etymology

The word insect comes from the Latin word insectum, meaning “with a notched or divided body”, or literally “cut into”, from the neuter singular perfect passive participle of insectare, “to cut into, to cut up”, from in- “into” and secare from seco “to cut”;[10][11] because insects appear “cut into” three sections. The Latin word was introduced by Pliny the Elder who calqued the Ancient Greek word ἔντομον éntomon “insect” (as in entomology) from ἔντομος éntomos “cut into sections” or “cut in pieces”;[12] éntomon was Aristotle‘s term for this class of life, also in reference to their “notched” bodies. The English word insect first appears documented in 1601 in Holland‘s translation of Pliny. Translations of Aristotle’s term also form the usual word for insect in Welsh (trychfil, from trychu “to cut” and mil, “animal”), Serbo-Croatian (zareznik, from rezati, “to cut”), Russian (насекомое [nasekomoje], from seč’/-sekat, “to cut”), etc.[10][13]

In common parlance, insects are also called bugs (derived from Middle English bugge meaning “scarecrow, hobgoblin”) though this term usually includes all terrestrial arthropods.[a] The term is also occasionally extended to colloquial names for freshwater or marine crustaceans (e.g. Balmain bugMoreton Bay bugmudbug) and used by physicians and bacteriologists for disease-causing germs (e.g. superbugs), but entomologists to some extent reserve this term for a narrow category of “true bugs“, insects of the order Hemiptera, such as cicadas and shield bugs.[16]

Definitions

The precise definition of the taxon Insecta and the equivalent English name “insect” varies; three alternative definitions are shown in the table.

GroupAlternative definitions
Collembola (springtails)Insecta sensu lato
= Hexapoda
EntognathaApterygota
(wingless hexapods)
Protura (coneheads)
Diplura (two-pronged bristletails)
Archaeognatha (jumping bristletails)Insecta sensu stricto
= Ectognatha
Zygentoma (silverfish)
Pterygota (winged insects)Insecta sensu strictissimo

In the broadest circumscription, Insecta sensu lato consists of all hexapods.[17][18] Traditionally, insects defined in this way were divided into “Apterygota” (the first five groups in the table)—the wingless insects—and Pterygota—the winged and secondarily wingless insects.[19] However, modern phylogenetic studies have shown that “Apterygota” is not monophyletic,[20] and so does not form a good taxon. A narrower circumscription restricts insects to those hexapods with external mouthparts, and comprises only the last three groups in the table. In this sense, Insecta sensu stricto is equivalent to Ectognatha.[17][20] In the narrowest circumscription, insects are restricted to hexapods that are either winged or descended from winged ancestors. Insecta sensu strictissimo is then equivalent to Pterygota.[21] For the purposes of this article, the middle definition is used; insects consist of two wingless taxa, Archaeognatha (jumping bristletails) and Zygentoma (silverfish), plus the winged or secondarily wingless Pterygota.

Phylogeny and evolution

Main article: Evolution of insects

External phylogeny

Although traditionally grouped with millipedes and centipedes,[22] more recent analysis indicates closer evolutionary ties with crustaceans. In the Pancrustacea theory, insects, together with EntognathaRemipedia, and Cephalocarida, form a clade, the Pancrustacea.[23] Insects form a single clade, closely related to crustaceans and myriapods.[24]

Other terrestrial arthropods, such as centipedesmillipedesscorpionsspiderswoodlicemites, and ticks are sometimes confused with insects since their body plans can appear similar, sharing (as do all arthropods) a jointed exoskeleton. However, upon closer examination, their features differ significantly; most noticeably, they do not have the six-legged characteristic of adult insects.[25]

phylogenetic tree of the arthropods places the insects in the context of other hexapods and the crustaceans, and the more distantly-related myriapods and chelicerates.[26][citation needed]

PanarthropodaOnychophora (velvet worms)TactopodaTardigrada (water bears)EuarthropodaChelicerata (spiders and allies)MandibulataMyriapoda (millipedes and centipedes)PancrustaceaOligostraca (ostracods and allies)Copepods and alliesMalacostraca (crabs, lobsters)Branchiopoda (fairy shrimps)HexapodaCollembola (springtails)Protura (coneheads)Diplura (bristletails)Insectasix legs
Evolution has produced enormous variety in insects. Pictured are some possible shapes of antennae.

Internal phylogeny

The internal phylogeny is based on the works of Sroka, Staniczek & Bechly 2014,[27] Prokop et al. 2017[28] and Wipfler et al. 2019.[29]

InsectaMonocondyliaArchaeognatha (hump-backed/jumping bristletails)DicondyliaZygentoma (silverfish, firebrats, fishmoths)ParanotaliaCarbotripluridaPterygotaHydropalaeopteraBojophlebiidaeOdonatoptera (dragonflies)Panephemeroptera (mayflies)NeopteraPolyneopteraHaplocercataZoraptera (angel insects)Dermaptera (earwigs)Plecoptera (stoneflies)Orthoptera (grasshoppers, crickets, katydids)DictyopteraMantodea (mantises)Blattodea (cockroaches & termites)NotopteraGrylloblattodea (ice crawlers)Mantophasmatodea (gladiators)(“Xenonomia”)EukinolabiaPhasmatodea (stick insects)Embioptera (webspinners)EumetabolaAcercariaPsocodea (book lice, barklice & sucking lice)Hemiptera (true bugs)Thysanoptera (thrips)HolometabolaHymenopteridaHymenoptera (sawflies, wasps, bees, ants)AparaglossataNeuropteriformaColeopteridaStrepsipteraColeoptera (beetles)NeuropteridaRhaphidiopteraNeuroptera (lacewings)MegalopteraPanorpidaAmphiesmenopteraLepidoptera (butterflies & moths)Trichoptera (caddisflies)AntliophoraDiptera (true flies)NannomecopteraMecoptera (scorpionflies)Neomecoptera (winter scorpionflies)Siphonaptera (fleas)larvae, pupaewings flex over abdomenwings

Taxonomy

See also: Category:Insect orders and Category:Insect families

Traditional morphology-based or appearance-based systematics have usually given the Hexapoda the rank of superclass,[30]: 180  and identified four groups within it: insects (Ectognatha), springtails (Collembola), Protura, and Diplura, the latter three being grouped together as the Entognatha on the basis of internalized mouth parts. Supraordinal relationships have undergone numerous changes with the advent of methods based on evolutionary history and genetic data. A recent theory is that the Hexapoda are polyphyletic (where the last common ancestor was not a member of the group), with the entognath classes having separate evolutionary histories from the Insecta.[31] Many of the traditional appearance-based taxa are paraphyletic, so rather than using ranks like subclasssuperorder, and infraorder, it has proved better to use monophyletic groupings (in which the last common ancestor is a member of the group). The following represents the best-supported monophyletic groupings for the Insecta.

Insects can be divided into two groups historically treated as subclasses: wingless insects, known as Apterygota, and winged insects, known as Pterygota. The Apterygota consisted of the primitively wingless orders Archaeognatha (jumping bristletails) and Zygentoma (silverfish). However, Apterygota is not a monophyletic group, as Archaeognatha are the sister group to all other insects, based on the arrangement of their mandibles, while Zygentoma and Pterygota are grouped together as Dicondylia. It was originally believed that Archaeognatha possessed a single phylogenetically primitive condyle each (thus the name “Monocondylia”), where all more derived insects have two, but this has since been shown to be incorrect; all insects, including Archaeognatha, have dicondylic mandibles, but archaeognaths possess two articulations that are homologous to those in other insects, though slightly different.[32] The Zygentoma themselves possibly are not monophyletic, with the family Lepidotrichidae being a sister group to the Dicondylia (Pterygota and the remaining Zygentoma).[33][34][clarification needed]

Paleoptera and Neoptera are the winged orders of insects differentiated by the presence of hardened body parts called sclerites, and in the Neoptera, muscles that allow their wings to fold flatly over the abdomen. Neoptera can further be divided into incomplete metamorphosis-based (Polyneoptera and Paraneoptera) and complete metamorphosis-based groups. It has proved difficult to clarify the relationships between the orders in Polyneoptera because of constant new findings calling for revision of the taxa. For example, the Paraneoptera have turned out to be more closely related to the Endopterygota than to the rest of the Exopterygota. The recent molecular finding that the traditional louse orders Mallophaga and Anoplura are derived from within Psocoptera has led to the new taxon Psocodea.[35] Phasmatodea and Embiidina have been suggested to form the Eukinolabia.[36] Mantodea, Blattodea, and Isoptera are thought to form a monophyletic group termed Dictyoptera.[37]

The Exopterygota likely are paraphyletic in regard to the Endopterygota. The Neuropterida are often lumped or split on the whims of the taxonomist. Fleas are now thought to be closely related to boreid mecopterans.[38] Many questions remain in the basal relationships among endopterygote orders, particularly the Hymenoptera.

Evolutionary relationships

Insects are prey for a variety of organisms, including terrestrial vertebrates. The earliest vertebrates on land existed 400 million years ago and were large amphibious piscivores. Through gradual evolutionary change, insectivory was the next diet type to evolve.[39]

Insects were among the earliest terrestrial herbivores and acted as major selection agents on plants.[40] Plants evolved chemical defenses against this herbivory and the insects, in turn, evolved mechanisms to deal with plant toxins. Many insects make use of these toxins to protect themselves from their predators. Such insects often advertise their toxicity using warning colors.[41] This successful evolutionary pattern has also been used by mimics. Over time, this has led to complex groups of coevolved species. Conversely, some interactions between plants and insects, like pollination, are beneficial to both organisms. Coevolution has led to the development of very specific mutualisms in such systems.

Evolutionary history

The oldest possible insect is Leverhulmia known from the Early Devonian aged Windyfield chert, which may represent a primitive wingless insect.[42] The oldest known flying insects appeared during the mid-Carboniferous, around 328–324 million years ago, and the group subsequently underwent a rapid explosive diversification. Claims that they originated substantially earlier during the Silurian or Devonian based on molecular clock estimates are unlikely based on the fossil record, and are likely analytical artefacts.[43]

Four large-scale radiations of insects have occurred: beetles (from about 300 million years ago), flies (from about 250 million years ago), moths and wasps (both from about 150 million years ago).[44] These four groups account for the majority of described species.

The remarkably successful Hymenoptera (wasps, bees, and ants) appeared as long as 200 million years ago in the Triassic period, but achieved their wide diversity more recently in the Cenozoic era, which began 66 million years ago. Some highly successful insect groups evolved in conjunction with flowering plants, a powerful illustration of coevolution.[40]

Diversity

A pie chart of described eukaryote species, showing just over half of these to be insects

Main article: Insect biodiversity

Estimates of the total number of insect species, or those within specific orders, often vary considerably. Globally, averages of these estimates suggest there are around 1.5 million beetle species and 5.5 million insect species, with about 1 million insect species currently found and described.[45] E. O. Wilson has estimated that the number of insects living at any one time are around 10 quintillion (10 billion billion).[46]

Between 950,000 and 1,000,000 of all described species are insects, so over 50% of all described eukaryotes (1.8 million) are insects (see illustration). With only 950,000 known non-insects, if the actual number of insects is 5.5 million, they may represent over 80% of the total. As only about 20,000 new species of all organisms are described each year, most insect species may remain undescribed, unless the rate of species descriptions greatly increases. Of the 24 orders of insects, four dominate in terms of numbers of described species; at least 670,000 identified species belong to ColeopteraDipteraHymenoptera or Lepidoptera.

Insects with population trends documented by the International Union for Conservation of Nature, for orders CollembolaHymenopteraLepidopteraOdonata, and Orthoptera. Of 203 insect species that had such documented population trends in 2013, 33% were in decline.[47]

As of 2017, at least 66 insect species extinctions had been recorded in the previous 500 years, generally on oceanic islands.[48] Declines in insect abundance have been attributed to artificial lighting,[49] land use changes such as urbanization or agricultural use,[50][51] pesticide use,[52] and invasive species.[53] Studies summarized in a 2019 review suggested that a large proportion of insect species is threatened with extinction in the 21st century.[54] The ecologist Manu Sanders notes that the 2019 review was biased by mostly excluding data showing increases or stability in insect population, with the studies limited to specific geographic areas and specific groups of species.[55] A larger 2020 meta-study, analyzing data from 166 long-term surveys, suggested that populations of terrestrial insects are decreasing rapidly, by about 9% per decade.[56][57] Claims of pending mass insect extinctions or “insect apocalypse” based on a subset of these studies have been popularized in news reports, but often extrapolate beyond the study data or hyperbolize study findings.[58] Other areas have shown increases in some insect species, although trends in most regions are currently unknown. It is difficult to assess long-term trends in insect abundance or diversity because historical measurements are generally not known for many species. Robust data to assess at-risk areas or species is especially lacking for arctic and tropical regions and a majority of the southern hemisphere.[58]

OrderExtant species described
Archaeognatha513
Zygentoma560
Ephemeroptera3,240
Odonata5,899
Orthoptera23,855
Neuroptera5,868
Phasmatodea3,014
Embioptera463
Notoptera54
Plecoptera3,743
Dermaptera1,978
Zoraptera37
Mantodea2,400
Blattodea7,314
Psocodea11,000[59]
Thysanoptera5,864
Hemiptera103,590
Hymenoptera116,861
Strepsiptera609
Coleoptera386,500
Megaloptera354
Raphidioptera254
Trichoptera14,391
Lepidoptera157,338
Diptera155,477
Siphonaptera2,075
Mecoptera757

Morphology and physiology

Main articles: Insect morphology and Insect physiology

External

Insect morphology
A– Head B– Thorax C– Abdomenantennaocellus (lower)ocellus (upper)compound eyebrain (cerebral ganglia)prothoraxdorsal blood vesseltracheal tubes (trunk with spiracle)mesothoraxmetathoraxforewinghindwingmidgut (stomach)dorsal tube (Heart)ovaryhindgut (intestine, rectum, anus)anusoviductnerve cord (abdominal ganglia)Malpighian tubulestarsal padsclawstarsustibiafemurtrochanterforegut (crop, gizzard)thoracic ganglioncoxasalivary glandsubesophageal ganglionmouthparts

Insects have segmented bodies supported by exoskeletons, the hard outer covering made mostly of chitin. The segments of the body are organized into three distinctive but interconnected units, or tagmata: a head, a thorax and an abdomen.[60] The head supports a pair of sensory antennae, a pair of compound eyes, zero to three simple eyes (or ocelli) and three sets of variously modified appendages that form the mouthparts. The thorax is made up of three segments: the prothorax, mesothorax and the metathorax. Each thoracic segment supports one pair of legs. The meso- and metathoracic segments may each have a pair of wings, depending on the insect. The abdomen consists of eleven segments, though in a few species of insects, these segments may be fused together or reduced in size. The abdomen also contains most of the digestiverespiratoryexcretory and reproductive internal structures.[30]: 22–48  Considerable variation and many adaptations in the body parts of insects occur, especially wings, legs, antenna and mouthparts.

Segmentation

The head is enclosed in a hard, heavily sclerotized, unsegmented, exoskeletal head capsule, or epicranium, which contains most of the sensing organs, including the antennae, ocellus or eyes, and the mouthparts. Of all the insect orders, Orthoptera displays the most features found in other insects, including the sutures and sclerites.[61] Here, the vertex, or the apex (dorsal region), is situated between the compound eyes for insects with a hypognathous and opisthognathous head. In prognathous insects, the vertex is not found between the compound eyes, but rather, where the ocelli are normally. This is because the primary axis of the head is rotated 90° to become parallel to the primary axis of the body. In some species, this region is modified and assumes a different name.[61]: 13 

The thorax is a tagma composed of three sections, the prothoraxmesothorax and the metathorax. The anterior segment, closest to the head, is the prothorax, with the major features being the first pair of legs and the pronotum. The middle segment is the mesothorax, with the major features being the second pair of legs and the anterior wings. The third and most posterior segment, abutting the abdomen, is the metathorax, which features the third pair of legs and the posterior wings. Each segment is delineated by an intersegmental suture. Each segment has four basic regions. The dorsal surface is called the tergum (or notum) to distinguish it from the abdominal terga.[30] The two lateral regions are called the pleura (singular: pleuron) and the ventral aspect is called the sternum. In turn, the notum of the prothorax is called the pronotum, the notum for the mesothorax is called the mesonotum and the notum for the metathorax is called the metanotum. Continuing with this logic, the mesopleura and metapleura, as well as the mesosternum and metasternum, are used.[61]

The abdomen is the largest tagma of the insect, which typically consists of 11–12 segments and is less strongly sclerotized than the head or thorax. Each segment of the abdomen is represented by a sclerotized tergum and sternum. Terga are separated from each other and from the adjacent sterna or pleura by membranes. Spiracles are located in the pleural area. Variation of this ground plan includes the fusion of terga or terga and sterna to form continuous dorsal or ventral shields or a conical tube. Some insects bear a sclerite in the pleural area called a laterotergite. Ventral sclerites are sometimes called laterosternites. During the embryonic stage of many insects and the postembryonic stage of primitive insects, 11 abdominal segments are present. In modern insects there is a tendency toward reduction in the number of the abdominal segments, but the primitive number of 11 is maintained during embryogenesis. Variation in abdominal segment number is considerable. If the Apterygota are considered to be indicative of the ground plan for pterygotes, confusion reigns: adult Protura have 12 segments, Collembola have 6. The orthopteran family Acrididae has 11 segments, and a fossil specimen of Zoraptera has a 10-segmented abdomen.[61]

Exoskeleton

The insect outer skeleton, the cuticle, is made up of two layers: the epicuticle, which is a thin and waxy water resistant outer layer and contains no chitin, and a lower layer called the procuticle. The procuticle is chitinous and much thicker than the epicuticle and has two layers: an outer layer known as the exocuticle and an inner layer known as the endocuticle. The tough and flexible endocuticle is built from numerous layers of fibrous chitin and proteins, criss-crossing each other in a sandwich pattern, while the exocuticle is rigid and hardened.[30]: 22–24  The exocuticle is greatly reduced in many insects during their larval stages, e.g., caterpillars. It is also reduced in soft-bodied adult insects.

During growth insects goes through a various number of instars where the old exoskeleton is shed, but once they reach sexual maturity, they stop molting. The exceptions are apterygote (ancestrally wingless) insects. Mayflies are the only insects with a sexually immature instar with functional wings, called subimago.[62]

As an adaptation to life on land, insects have evolved a gene that creates an enzyme called multicopper oxidase-2 (MCO2), which uses atmospheric oxygen to harden their cuticle, unlike crustaceans which use calcium for the same purpose. This makes their exoskeleton into a lightweight material. The gene is insect specific and not found in any other groups of arthropods, including hexapods like springtails and diplurans.[63]

Insects are the only invertebrates to have developed active flight capability, and this has played an important role in their success.[30]: 186  Their flight muscles are able to contract multiple times for each single nerve impulse, allowing the wings to beat faster than would ordinarily be possible.

Having their muscles attached to their exoskeletons is efficient and allows more muscle connections.

Internal

Nervous system

The nervous system of an insect can be divided into a brain and a ventral nerve cord. The head capsule is made up of six fused segments, each with either a pair of ganglia, or a cluster of nerve cells outside of the brain. The first three pairs of ganglia are fused into the brain, while the three following pairs are fused into a structure of three pairs of ganglia under the insect’s esophagus, called the subesophageal ganglion.[30]: 57 

The thoracic segments have one ganglion on each side, which are connected into a pair, one pair per segment. This arrangement is also seen in the abdomen but only in the first eight segments. Many species of insects have reduced numbers of ganglia due to fusion or reduction.[64] Some cockroaches have just six ganglia in the abdomen, whereas the wasp Vespa crabro has only two in the thorax and three in the abdomen. Some insects, like the house fly Musca domestica, have all the body ganglia fused into a single large thoracic ganglion.[65]

At least some insects have nociceptors, cells that detect and transmit signals responsible for the sensation of pain.[66][failed verification][67] This was discovered in 2003 by studying the variation in reactions of larvae of the common fruit-fly Drosophila to the touch of a heated probe and an unheated one. The larvae reacted to the touch of the heated probe with a stereotypical rolling behavior that was not exhibited when the larvae were touched by the unheated probe.[68] Although nociception has been demonstrated in insects, there is no consensus that insects feel pain consciously[69]

Insects are capable of learning.[70]

Digestive system

An insect uses its digestive system to extract nutrients and other substances from the food it consumes.[71] Most of this food is ingested in the form of macromolecules and other complex substances like proteinspolysaccharidesfats and nucleic acids. These macromolecules must be broken down by catabolic reactions into smaller molecules like amino acids and simple sugars before being used by cells of the body for energy, growth, or reproduction. This break-down process is known as digestion.

There is extensive variation among different orderslife stages, and even castes in the digestive system of insects.[72] This is the result of extreme adaptations to various lifestyles. The present description focuses on a generalized composition of the digestive system of an adult orthopteroid insect, which is considered basal to interpreting particularities of other groups.

The main structure of an insect’s digestive system is a long enclosed tube called the alimentary canal, which runs lengthwise through the body. The alimentary canal directs food unidirectionally from the mouth to the anus. It has three sections, each of which performs a different process of digestion. In addition to the alimentary canal, insects also have paired salivary glands and salivary reservoirs. These structures usually reside in the thorax, adjacent to the foregut.[30]: 70–77  The salivary glands (element 30 in numbered diagram) in an insect’s mouth produce saliva. The salivary ducts lead from the glands to the reservoirs and then forward through the head to an opening called the salivarium, located behind the hypopharynx. By moving its mouthparts (element 32 in numbered diagram) the insect can mix its food with saliva. The mixture of saliva and food then travels through the salivary tubes into the mouth, where it begins to break down.[73][74] Some insects, like flies, have extra-oral digestion. Insects using extra-oral digestion expel digestive enzymes onto their food to break it down. This strategy allows insects to extract a significant proportion of the available nutrients from the food source.[75]: 31  The gut is where almost all of insects’ digestion takes place. It can be divided into the foregutmidgut and hindgut.

Foregut
Stylized diagram of insect digestive tract showing malpighian tubule, from an insect of the order Orthoptera

The first section of the alimentary canal is the foregut (element 27 in numbered diagram), or stomodaeum. The foregut is lined with a cuticular lining made of chitin and proteins as protection from tough food. The foregut includes the buccal cavity (mouth), pharynxesophagus and crop and proventriculus (any part may be highly modified), which both store food and signify when to continue passing onward to the midgut.[30]: 70 

Digestion starts in buccal cavity (mouth) as partially chewed food is broken down by saliva from the salivary glands. As the salivary glands produce fluid and carbohydrate-digesting enzymes (mostly amylases), strong muscles in the pharynx pump fluid into the buccal cavity, lubricating the food like the salivarium does, and helping blood feeders, and xylem and phloem feeders.

From there, the pharynx passes food to the esophagus, which could be just a simple tube passing it on to the crop and proventriculus, and then onward to the midgut, as in most insects. Alternately, the foregut may expand into a very enlarged crop and proventriculus, or the crop could just be a diverticulum, or fluid-filled structure, as in some Diptera species.[75]: 30–31 

Midgut

Once food leaves the crop, it passes to the midgut (element 13 in numbered diagram), also known as the mesenteron, where the majority of digestion takes place. Microscopic projections from the midgut wall, called microvilli, increase the surface area of the wall and allow more nutrients to be absorbed; they tend to be close to the origin of the midgut. In some insects, the role of the microvilli and where they are located may vary. For example, specialized microvilli producing digestive enzymes may more likely be near the end of the midgut, and absorption near the origin or beginning of the midgut.[75]: 32 

Hindgut

In the hindgut (element 16 in numbered diagram), or proctodaeum, undigested food particles are joined by uric acid to form fecal pellets. The rectum absorbs 90% of the water in these fecal pellets, and the dry pellet is then eliminated through the anus (element 17), completing the process of digestion. Envaginations at the anterior end of the hindgut form the Malpighian tubules, which form the main excretory system of insects.

Excretory system

Insects may have one to hundreds of Malpighian tubules (element 20). These tubules remove nitrogenous wastes from the hemolymph of the insect and regulate osmotic balance. Wastes and solutes are emptied directly into the alimentary canal, at the junction between the midgut and hindgut.[30]: 71–72, 78–80 

Reproductive system

Main article: Insect reproductive system

The reproductive system of female insects consist of a pair of ovaries, accessory glands, one or more spermathecae, and ducts connecting these parts. The ovaries are made up of a number of egg tubes, called ovarioles, which vary in size and number by species. The number of eggs that the insect is able to make vary by the number of ovarioles with the rate that eggs can develop being also influenced by ovariole design. Female insects are able make eggs, receive and store sperm, manipulate sperm from different males, and lay eggs. Accessory glands or glandular parts of the oviducts produce a variety of substances for sperm maintenance, transport and fertilization, as well as for protection of eggs. They can produce glue and protective substances for coating eggs or tough coverings for a batch of eggs called oothecae. Spermathecae are tubes or sacs in which sperm can be stored between the time of mating and the time an egg is fertilized.[61]: 880 

For males, the reproductive system is the testis, suspended in the body cavity by tracheae and the fat body. Most male insects have a pair of testes, inside of which are sperm tubes or follicles that are enclosed within a membranous sac. The follicles connect to the vas deferens by the vas efferens, and the two tubular vasa deferentia connect to a median ejaculatory duct that leads to the outside. A portion of the vas deferens is often enlarged to form the seminal vesicle, which stores the sperm before they are discharged into the female. The seminal vesicles have glandular linings that secrete nutrients for nourishment and maintenance of the sperm. The ejaculatory duct is derived from an invagination of the epidermal cells during development and, as a result, has a cuticular lining. The terminal portion of the ejaculatory duct may be sclerotized to form the intromittent organ, the aedeagus. The remainder of the male reproductive system is derived from embryonic mesoderm, except for the germ cells, or spermatogonia, which descend from the primordial pole cells very early during embryogenesis.[61]: 885 

Respiratory system

The tube-like heart (green) of the mosquito Anopheles gambiae extends horizontally across the body, interlinked with the diamond-shaped wing muscles (also green) and surrounded by pericardial cells (red). Blue depicts cell nuclei.

Insect respiration is accomplished without lungs. Instead, the insect respiratory system uses a system of internal tubes and sacs through which gases either diffuse or are actively pumped, delivering oxygen directly to tissues that need it via their trachea (element 8 in numbered diagram). In most insects, air is taken in through openings on the sides of the abdomen and thorax called spiracles.

The respiratory system is an important factor that limits the size of insects. As insects get larger, this type of oxygen transport is less efficient and thus the heaviest insect currently weighs less than 100 g. However, with increased atmospheric oxygen levels, as were present in the late Paleozoic, larger insects were possible, such as dragonflies with wingspans of more than two feet (60 cm).[76]

There are many different patterns of gas exchange demonstrated by different groups of insects. Gas exchange patterns in insects can range from continuous and diffusive ventilation, to discontinuous gas exchange.[30]: 65–68  During continuous gas exchange, oxygen is taken in and carbon dioxide is released in a continuous cycle. In discontinuous gas exchange, however, the insect takes in oxygen while it is active and small amounts of carbon dioxide are released when the insect is at rest.[77] Diffusive ventilation is simply a form of continuous gas exchange that occurs by diffusion rather than physically taking in the oxygen. Some species of insect that are submerged also have adaptations to aid in respiration. As larvae, many insects have gills that can extract oxygen dissolved in water, while others need to rise to the water surface to replenish air supplies, which may be held or trapped in special structures.[78][79]

Circulatory system

Because oxygen is delivered directly to tissues via tracheoles, the circulatory system is not used to carry oxygen, and is therefore greatly reduced. The insect circulatory system is open; it has no veins or arteries, and instead consists of little more than a single, perforated dorsal tube that pulses peristaltically. This dorsal blood vessel (element 14) is divided into two sections: the heart and aorta. The dorsal blood vessel circulates the hemolymph, arthropods’ fluid analog of blood, from the rear of the body cavity forward.[30]: 61–65 [80] Hemolymph is composed of plasma in which hemocytes are suspended. Nutrients, hormones, wastes, and other substances are transported throughout the insect body in the hemolymph. Hemocytes include many types of cells that are important for immune responses, wound healing, and other functions. Hemolymph pressure may be increased by muscle contractions or by swallowing air into the digestive system to aid in molting.[81] Hemolymph is also a major part of the open circulatory system of other arthropods, such as spiders and crustaceans.[82][83]

Reproduction and development

A pair of Simosyrphus grandicornis hoverflies mating in flight.

A pair of grasshoppers mating.

The majority of insects hatch from eggs. The fertilization and development takes place inside the egg, enclosed by a shell (chorion) that consists of maternal tissue. In contrast to eggs of other arthropods, most insect eggs are drought resistant. This is because inside the chorion two additional membranes develop from embryonic tissue, the amnion and the serosa. This serosa secretes a cuticle rich in chitin that protects the embryo against desiccation. In Schizophora however the serosa does not develop, but these flies lay their eggs in damp places, such as rotting matter.[84] Some species of insects, like the cockroach Blaptica dubia, as well as juvenile aphids and tsetse flies, are ovoviviparous. The eggs of ovoviviparous animals develop entirely inside the female, and then hatch immediately upon being laid.[6] Some other species, such as those in the genus of cockroaches known as Diploptera, are viviparous, and thus gestate inside the mother and are born alive.[30]: 129, 131, 134–135  Some insects, like parasitic wasps, show polyembryony, where a single fertilized egg divides into many and in some cases thousands of separate embryos.[30]: 136–137  Insects may be univoltinebivoltine or multivoltine, i.e. they may have one, two or many broods (generations) in a year.[85]

The different forms of the male (top) and female (bottom) tussock moth Orgyia recens is an example of sexual dimorphism in insects.

Other developmental and reproductive variations include haplodiploidypolymorphismpaedomorphosis or peramorphosissexual dimorphismparthenogenesis and more rarely hermaphroditism.[30]: 143 [86] In haplodiploidy, which is a type of sex-determination system, the offspring’s sex is determined by the number of sets of chromosomes an individual receives. This system is typical in bees and wasps.[87] Polymorphism is where a species may have different morphs or forms, as in the oblong winged katydid, which has four different varieties: green, pink and yellow or tan. Some insects may retain phenotypes that are normally only seen in juveniles; this is called paedomorphosis. In peramorphosis, an opposite sort of phenomenon, insects take on previously unseen traits after they have matured into adults. Many insects display sexual dimorphism, in which males and females have notably different appearances, such as the moth Orgyia recens as an exemplar of sexual dimorphism in insects.

Some insects use parthenogenesis, a process in which the female can reproduce and give birth without having the eggs fertilized by a male. Many aphids undergo a form of parthenogenesis, called cyclical parthenogenesis, in which they alternate between one or many generations of asexual and sexual reproduction.[88][89] In summer, aphids are generally female and parthenogenetic; in the autumn, males may be produced for sexual reproduction. Other insects produced by parthenogenesis are bees, wasps and ants, in which they spawn males. However, overall, most individuals are female, which are produced by fertilization. The males are haploid and the females are diploid.[6]

Insect life-histories show adaptations to withstand cold and dry conditions. Some temperate region insects are capable of activity during winter, while some others migrate to a warmer climate or go into a state of torpor.[90] Still other insects have evolved mechanisms of diapause that allow eggs or pupae to survive these conditions.[91]

Metamorphosis

Metamorphosis in insects is the biological process of development all insects must undergo. There are two forms of metamorphosis: incomplete metamorphosis and complete metamorphosis.

Incomplete metamorphosis

Main article: Hemimetabolism

Hemimetabolous insects, those with incomplete metamorphosis, change gradually by undergoing a series of molts. An insect molts when it outgrows its exoskeleton, which does not stretch and would otherwise restrict the insect’s growth. The molting process begins as the insect’s epidermis secretes a new epicuticle inside the old one. After this new epicuticle is secreted, the epidermis releases a mixture of enzymes that digests the endocuticle and thus detaches the old cuticle. When this stage is complete, the insect makes its body swell by taking in a large quantity of water or air, which makes the old cuticle split along predefined weaknesses where the old exocuticle was thinnest.[30]: 142 [92]

Immature insects that go through incomplete metamorphosis are called nymphs or in the case of dragonflies and damselflies, also naiads. Nymphs are similar in form to the adult except for the presence of wings, which are not developed until adulthood. With each molt, nymphs grow larger and become more similar in appearance to adult insects.

This southern hawker dragonfly molts its exoskeleton several times during its life as a nymph; shown is the final molt to become a winged adult (eclosion).

Complete metamorphosis

Main article: Holometabolism

Gulf fritillary life cycle, an example of holometabolism.

Holometabolism, or complete metamorphosis, is where the insect changes in four stages, an egg or embryo, a larva, a pupa and the adult or imago. In these species, an egg hatches to produce a larva, which is generally worm-like in form. This worm-like form can be one of several varieties: eruciform (caterpillar-like), scarabaeiform (grub-like), campodeiform (elongated, flattened and active), elateriform (wireworm-like) or vermiform (maggot-like). The larva grows and eventually becomes a pupa, a stage marked by reduced movement and often sealed within a cocoon. There are three types of pupae: obtect, exarate or coarctate. Obtect pupae are compact, with the legs and other appendages enclosed. Exarate pupae have their legs and other appendages free and extended. Coarctate pupae develop inside the larval skin.[30]: 151  Insects undergo considerable change in form during the pupal stage, and emerge as adults. Butterflies are a well-known example of insects that undergo complete metamorphosis, although most insects use this life cycle. Some insects have evolved this system to hypermetamorphosis.

Complete metamorphosis is a trait of the most diverse insect group, the Endopterygota.[30]: 143  Endopterygota includes 11 Orders, the largest being Diptera (flies), Lepidoptera (butterflies and moths), and Hymenoptera (bees, wasps, and ants), and Coleoptera (beetles). This form of development is exclusive to insects and not seen in any other arthropods.

Senses and communication

Many insects possess very sensitive and specialized organs of perception. Some insects such as bees can perceive ultraviolet wavelengths, or detect polarized light, while the antennae of male moths can detect the pheromones of female moths over distances of many kilometers.[93] The yellow paper wasp (Polistes versicolor) is known for its wagging movements as a form of communication within the colony; it can waggle with a frequency of 10.6±2.1 Hz (n=190). These wagging movements can signal the arrival of new material into the nest and aggression between workers can be used to stimulate others to increase foraging expeditions.[94] There is a pronounced tendency for there to be a trade-off between visual acuity and chemical or tactile acuity, such that most insects with well-developed eyes have reduced or simple antennae, and vice versa. There are a variety of different mechanisms by which insects perceive sound; while the patterns are not universal, insects can generally hear sound if they can produce it. Different insect species can have varying hearing, though most insects can hear only a narrow range of frequencies related to the frequency of the sounds they can produce. Mosquitoes have been found to hear up to 2 kHz, and some grasshoppers can hear up to 50 kHz.[95] Certain predatory and parasitic insects can detect the characteristic sounds made by their prey or hosts, respectively. For instance, some nocturnal moths can perceive the ultrasonic emissions of bats, which helps them avoid predation.[30]: 87–94  Insects that feed on blood have special sensory structures that can detect infrared emissions, and use them to home in on their hosts.

Some insects display a rudimentary sense of numbers,[96] such as the solitary wasps that prey upon a single species. The mother wasp lays her eggs in individual cells and provides each egg with a number of live caterpillars on which the young feed when hatched. Some species of wasp always provide five, others twelve, and others as high as twenty-four caterpillars per cell. The number of caterpillars is different among species, but always the same for each sex of larva. The male solitary wasp in the genus Eumenes is smaller than the female, so the mother of one species supplies him with only five caterpillars; the larger female receives ten caterpillars in her cell.

Light production and vision

Most insects have compound eyes and two antennae.

A few insects, such as members of the families Poduridae and Onychiuridae (Collembola), Mycetophilidae (Diptera) and the beetle families LampyridaePhengodidaeElateridae and Staphylinidae are bioluminescent. The most familiar group are the fireflies, beetles of the family Lampyridae. Some species are able to control this light generation to produce flashes. The function varies with some species using them to attract mates, while others use them to lure prey. Cave dwelling larvae of Arachnocampa (Mycetophilidae, fungus gnats) glow to lure small flying insects into sticky strands of silk.[97] Some fireflies of the genus Photuris mimic the flashing of female Photinus species to attract males of that species, which are then captured and devoured.[98] The colors of emitted light vary from dull blue (Orfelia fultoni, Mycetophilidae) to the familiar greens and the rare reds (Phrixothrix tiemanni, Phengodidae).[99]

Most insects, except some species of cave crickets, are able to perceive light and dark. Many species have acute vision capable of detecting minute movements. The eyes may include simple eyes or ocelli as well as compound eyes of varying sizes. Many species are able to detect light in the infraredultraviolet and visible light wavelengths. Color vision has been demonstrated in many species and phylogenetic analysis suggests that UV-green-blue trichromacy existed from at least the Devonian period between 416 and 359 million years ago.[100]

The individual lenses in compound eyes are immobile, and it was therefore presumed that insects were not able to focus. But research on fruit flies, which is the only insects studied so far, has shown that photoreceptor cells underneath each lens move rapidly in and out of focus in a series of movements called photoreceptor microsaccades. This gives them a much clearer image of the world than previously assumed.[101]

Sound production and hearing

Insects were the earliest organisms to produce and sense sounds. Hearing has evolved independently at least 19 times in different insect groups.[102] Insects make sounds mostly by mechanical action of appendages. In grasshoppers and crickets, this is achieved by stridulationCicadas make the loudest sounds among the insects by producing and amplifying sounds with special modifications to their body to form tymbals and associated musculature. The African cicada Brevisana brevis has been measured at 106.7 decibels at a distance of 50 cm (20 in).[103] Some insects, such as the Helicoverpa zea moths, hawk moths and Hedylid butterflies, can hear ultrasound and take evasive action when they sense that they have been detected by bats.[104][105] Some moths produce ultrasonic clicks that were once thought to have a role in jamming bat echolocation. The ultrasonic clicks were subsequently found to be produced mostly by unpalatable moths to warn bats, just as warning colorations are used against predators that hunt by sight.[106] Some otherwise palatable moths have evolved to mimic these calls.[107] More recently, the claim that some moths can jam bat sonar has been revisited. Ultrasonic recording and high-speed infrared videography of bat-moth interactions suggest the palatable tiger moth really does defend against attacking big brown bats using ultrasonic clicks that jam bat sonar.[108]

Grasshopper stridulation

0:18

Several unidentified grasshoppers stridulating


Problems playing this file? See media help.

Very low sounds are also produced in various species of ColeopteraHymenopteraLepidopteraMantodea and Neuroptera. These low sounds are simply the sounds made by the insect’s movement. Through microscopic stridulatory structures located on the insect’s muscles and joints, the normal sounds of the insect moving are amplified and can be used to warn or communicate with other insects. Most sound-making insects also have tympanal organs that can perceive airborne sounds. Some species in Hemiptera, such as the corixids (water boatmen), are known to communicate via underwater sounds.[109] Most insects are also able to sense vibrations transmitted through surfaces.0:11Cricket in garage with familiar call.

Communication using surface-borne vibrational signals is more widespread among insects because of size constraints in producing air-borne sounds.[110] Insects cannot effectively produce low-frequency sounds, and high-frequency sounds tend to disperse more in a dense environment (such as foliage), so insects living in such environments communicate primarily using substrate-borne vibrations.[111] The mechanisms of production of vibrational signals are just as diverse as those for producing sound in insects.

Some species use vibrations for communicating within members of the same species, such as to attract mates as in the songs of the shield bug Nezara viridula.[112] Vibrations can also be used to communicate between entirely different species; lycaenid (gossamer-winged butterfly) caterpillars, which are myrmecophilous (living in a mutualistic association with ants) communicate with ants in this way.[113] The Madagascar hissing cockroach has the ability to press air through its spiracles to make a hissing noise as a sign of aggression;[114] the death’s-head hawkmoth makes a squeaking noise by forcing air out of their pharynx when agitated, which may also reduce aggressive worker honey bee behavior when the two are close.[115]

Chemical communication

Main article: Chemical communication in insects

Chemical communications in animals rely on a variety of aspects including taste and smell. Chemoreception is the physiological response of a sense organ (i.e. taste or smell) to a chemical stimulus where the chemicals act as signals to regulate the state or activity of a cell. A semiochemical is a message-carrying chemical that is meant to attract, repel, and convey information. Types of semiochemicals include pheromones and kairomones. One example is the butterfly Phengaris arion which uses chemical signals as a form of mimicry to aid in predation.[116]

In addition to the use of sound for communication, a wide range of insects have evolved chemical means for communication. These semiochemicals are often derived from plant metabolites including those meant to attract, repel and provide other kinds of information. Pheromones, a type of semiochemical, are used for attracting mates of the opposite sex, for aggregating conspecific individuals of both sexes, for deterring other individuals from approaching, to mark a trail, and to trigger aggression in nearby individuals. Allomones benefit their producer by the effect they have upon the receiver. Kairomones benefit their receiver instead of their producer. Synomones benefit the producer and the receiver. While some chemicals are targeted at individuals of the same species, others are used for communication across species. The use of scents is especially well-developed in social insects.[30]: 96–105  Cuticular hydrocarbons are nonstructural materials produced and secreted to the cuticle surface to fight desiccation and pathogens. They are important, too, as pheromones, especially in social insects.[117]

Social behavior

A cathedral mound created by termites (Isoptera).

Social insects, such as termitesants and many bees and wasps, are the most familiar species of eusocial animals.[118] They live together in large well-organized colonies that may be so tightly integrated and genetically similar that the colonies of some species are sometimes considered superorganisms. It is sometimes argued that the various species of honey bee are the only invertebrates (and indeed one of the few non-human groups) to have evolved a system of abstract symbolic communication where a behavior is used to represent and convey specific information about something in the environment. In this communication system, called dance language, the angle at which a bee dances represents a direction relative to the sun, and the length of the dance represents the distance to be flown.[30]: 309–311  Though perhaps not as advanced as honey bees, bumblebees also potentially have some social communication behaviors. Bombus terrestris, for example, exhibit a faster learning curve for visiting unfamiliar, yet rewarding flowers, when they can see a conspecific foraging on the same species.[119]

Only insects that live in nests or colonies demonstrate any true capacity for fine-scale spatial orientation or homing. This can allow an insect to return unerringly to a single hole a few millimeters in diameter among thousands of apparently identical holes clustered together, after a trip of up to several kilometers’ distance. In a phenomenon known as philopatry, insects that hibernate have shown the ability to recall a specific location up to a year after last viewing the area of interest.[120] A few insects seasonally migrate large distances between different geographic regions (e.g., the overwintering areas of the monarch butterfly).[30]: 14 

Care of young

The eusocial insects build nests, guard eggs, and provide food for offspring full-time. Most insects, however, lead short lives as adults, and rarely interact with one another except to mate or compete for mates. A small number exhibit some form of parental care, where they will at least guard their eggs, and sometimes continue guarding their offspring until adulthood, and possibly even feeding them. Another simple form of parental care is to construct a nest (a burrow or an actual construction, either of which may be simple or complex), store provisions in it, and lay an egg upon those provisions. The adult does not contact the growing offspring, but it nonetheless does provide food. This sort of care is typical for most species of bees and various types of wasps.[121]

Locomotion

Flight

Main articles: Insect flight and Insect wing

Basic motion of the insect wing in insect with an indirect flight mechanism scheme of dorsoventral cut through a thorax segment with a wings, b joints, c dorsoventral muscles, d longitudinal muscles.

Insects are the only group of invertebrates to have developed flight. The evolution of insect wings has been a subject of debate. Some entomologists suggest that the wings are from paranotal lobes, or extensions from the insect’s exoskeleton called the nota, called the paranotal theory. Other theories are based on a pleural origin. Another theory suggest the wings are actually made up of both the notum and the pleuron.[122] These theories include suggestions that wings originated from modified gills, spiracular flaps or as from an appendage of the epicoxa. The epicoxal theory suggests the insect wings are modified epicoxal exites, a modified appendage at the base of the legs or coxa.[123] In the Carboniferous age, some of the Meganeura dragonflies had as much as a 50 cm (20 in) wide wingspan. The appearance of gigantic insects has been found to be consistent with high atmospheric oxygen. The respiratory system of insects constrains their size, however the high oxygen in the atmosphere allowed larger sizes.[124] The largest flying insects today are much smaller, with the largest wingspan belonging to the white witch moth (Thysania agrippina), at approximately 28 cm (11 in).[125]

Insect flight has been a topic of great interest in aerodynamics due partly to the inability of steady-state theories to explain the lift generated by the tiny wings of insects. But insect wings are in motion, with flapping and vibrations, resulting in churning and eddies, and the misconception that physics says “bumblebees can’t fly” persisted throughout most of the twentieth century.

Unlike birds, many small insects are swept along by the prevailing winds[126] although many of the larger insects are known to make migrationsAphids are known to be transported long distances by low-level jet streams.[127] As such, fine line patterns associated with converging winds within weather radar imagery, like the WSR-88D radar network, often represent large groups of insects.[128] Radar can also be deliberately used to monitor insects.[129]

Walking

Further information: Terrestrial locomotion0:45Spatial and temporal stepping pattern of walking desert ants performing an alternating tripod gait. Recording rate: 500 fps, Playback rate: 10 fps.

Many adult insects use six legs for walking, with an alternating tripod gait. This allows for rapid walking while always having a stable stance; it has been studied extensively in cockroaches and ants. For the first step, the middle right leg and the front and rear left legs are in contact with the ground and move the insect forward, while the front and rear right leg and the middle left leg are lifted and moved forward to a new position. When they touch the ground to form a new stable triangle the other legs can be lifted and brought forward in turn and so on.[130] The purest form of the tripedal gait is seen in insects moving at high speeds. However, this type of locomotion is not rigid and insects can adapt a variety of gaits. For example, when moving slowly, turning, avoiding obstacles, climbing or slippery surfaces, four (tetrapod) or more feet (wave-gait[131]) may be touching the ground. Insects can also adapt their gait to cope with the loss of one or more limbs.

Cockroaches are among the fastest insect runners and, at full speed, adopt a bipedal run to reach a high velocity in proportion to their body size. As cockroaches move very quickly, they need to be video recorded at several hundred frames per second to reveal their gait. More sedate locomotion is seen in the stick insects or walking sticks (Phasmatodea). A few insects have evolved to walk on the surface of the water, especially members of the Gerridae family, commonly known as water striders. A few species of ocean-skaters in the genus Halobates even live on the surface of open oceans, a habitat that has few insect species.[132]

Insect walking is of particular interest as practical form of robot locomotion. The study of insects and bipeds has a significant impact on possible robotic methods of transport. This may allow new hexapod robots to be designed that can traverse terrain that robots with wheels may be unable to handle.[130]

Swimming

Main article: Aquatic insects

The backswimmer Notonecta glauca underwater, showing its paddle-like hindleg adaptation

A large number of insects live either part or the whole of their lives underwater. In many of the more primitive orders of insect, the immature stages are spent in an aquatic environment. Some groups of insects, like certain water beetles, have aquatic adults as well.[78]

Many of these species have adaptations to help in under-water locomotion. Water beetles and water bugs have legs adapted into paddle-like structures. Dragonfly naiads use jet propulsion, forcibly expelling water out of their rectal chamber.[133] Some species like the water striders are capable of walking on the surface of water. They can do this because their claws are not at the tips of the legs as in most insects, but recessed in a special groove further up the leg; this prevents the claws from piercing the water’s surface film.[78] Other insects such as the Rove beetle Stenus are known to emit pygidial gland secretions that reduce surface tension making it possible for them to move on the surface of water by Marangoni propulsion (also known by the German term Entspannungsschwimmen).[134][135]

Ecology

Main article: Insect ecology

Insect ecology is the scientific study of how insects, individually or as a community, interact with the surrounding environment or ecosystem.[136]: 3  Insects play one of the most important roles in their ecosystems, which includes many roles, such as soil turning and aeration, dung burial, pest control, pollination and wildlife nutrition. An example is the beetles, which are scavengers that feed on dead animals and fallen trees and thereby recycle biological materials into forms found useful by other organisms.[137] These insects, and others, are responsible for much of the process by which topsoil is created.[30]: 3, 218–228 

Defense and predation

See also: Defense in insects

Perhaps one of the most well-known examples of mimicry, the viceroy butterfly (top) appears very similar to the monarch butterfly (bottom).[138]

Insects are mostly soft bodied, fragile and almost defenseless compared to other, larger lifeforms. The immature stages are small, move slowly or are immobile, and so all stages are exposed to predation and parasitism. Insects then have a variety of defense strategies to avoid being attacked by predators or parasitoids. These include camouflagemimicry, toxicity and active defense.[139]

Camouflage is an important defense strategy, which involves the use of coloration or shape to blend into the surrounding environment.[140] This sort of protective coloration is common and widespread among beetle families, especially those that feed on wood or vegetation, such as many of the leaf beetles (family Chrysomelidae) or weevils. In some of these species, sculpturing or various colored scales or hairs cause the beetle to resemble bird dung or other inedible objects. Many of those that live in sandy environments blend in with the coloration of the substrate.[139] Most phasmids are known for effectively replicating the forms of sticks and leaves, and the bodies of some species (such as O. macklotti and Palophus centaurus) are covered in mossy or lichenous outgrowths that supplement their disguise. Very rarely, a species may have the ability to change color as their surroundings shift (Bostra scabrinota). In a further behavioral adaptation to supplement crypsis, a number of species have been noted to perform a rocking motion where the body is swayed from side to side that is thought to reflect the movement of leaves or twigs swaying in the breeze. Another method by which stick insects avoid predation and resemble twigs is by feigning death (catalepsy), where the insect enters a motionless state that can be maintained for a long period. The nocturnal feeding habits of adults also aids Phasmatodea in remaining concealed from predators.[141]

Another defense that often uses color or shape to deceive potential enemies is mimicry. A number of longhorn beetles (family Cerambycidae) bear a striking resemblance to wasps, which helps them avoid predation even though the beetles are in fact harmless.[139] Batesian and Müllerian mimicry complexes are commonly found in Lepidoptera. Genetic polymorphism and natural selection give rise to otherwise edible species (the mimic) gaining a survival advantage by resembling inedible species (the model). Such a mimicry complex is referred to as Batesian. One of the most famous examples, where the viceroy butterfly was long believed to be a Batesian mimic of the inedible monarch, was later disproven, as the viceroy is more toxic than the monarch, and this resemblance is now considered to be a case of Müllerian mimicry.[138] In Müllerian mimicry, inedible species, usually within a taxonomic order, find it advantageous to resemble each other so as to reduce the sampling rate by predators who need to learn about the insects’ inedibility. Taxa from the toxic genus Heliconius form one of the most well known Müllerian complexes.[142]

Chemical defense is another important defense found among species of Coleoptera and Lepidoptera, usually being advertised by bright colors, such as the monarch butterfly. They obtain their toxicity by sequestering the chemicals from the plants they eat into their own tissues. Some Lepidoptera manufacture their own toxins. Predators that eat poisonous butterflies and moths may become sick and vomit violently, learning not to eat those types of species; this is actually the basis of Müllerian mimicry. A predator who has previously eaten a poisonous lepidopteran may avoid other species with similar markings in the future, thus saving many other species as well.[143] Some ground beetles of the family Carabidae can spray chemicals from their abdomen with great accuracy, to repel predators.[139]

Pollination

Main article: Pollination

European honey bee carrying pollen in a pollen basket back to the hive

Pollination is the process by which pollen is transferred in the reproduction of plants, thereby enabling fertilisation and sexual reproduction. Most flowering plants require an animal to do the transportation. While other animals are included as pollinators, the majority of pollination is done by insects.[144] Because insects usually receive benefit for the pollination in the form of energy rich nectar it is a grand example of mutualism. The various flower traits (and combinations thereof) that differentially attract one type of pollinator or another are known as pollination syndromes. These arose through complex plant-animal adaptations. Pollinators find flowers through bright colorations, including ultraviolet, and attractant pheromones. The study of pollination by insects is known as anthecology.

Parasitism

Many insects are parasites of other insects such as the parasitoid wasps. These insects are known as entomophagous parasites. They can be beneficial due to their devastation of pests that can destroy crops and other resources. Many insects have a parasitic relationship with humans such as the mosquito. These insects are known to spread diseases such as malaria and yellow fever and because of such, mosquitoes indirectly cause more deaths of humans than any other animal.

Relationship to humans

As pests

See also: Pest insect

Aedes aegypti, a parasite, is the vector of dengue fever and yellow fever

Many insects are considered pests by humans. Insects commonly regarded as pests include those that are parasitic (e.g. licebed bugs), transmit diseases (mosquitoesflies), damage structures (termites), or destroy agricultural goods (locustsweevils). Many entomologists are involved in various forms of pest control, as in research for companies to produce insecticides, but increasingly rely on methods of biological pest control, or biocontrol. Biocontrol uses one organism to reduce the population density of another organism—the pest—and is considered a key element of integrated pest management.[145][146]

Despite the large amount of effort focused at controlling insects, human attempts to kill pests with insecticides can backfire. If used carelessly, the poison can kill all kinds of organisms in the area, including insects’ natural predators, such as birds, mice and other insectivores. The effects of DDT‘s use exemplifies how some insecticides can threaten wildlife beyond intended populations of pest insects.[147][148]

In beneficial roles

See also: Economic entomology § Beneficial insects

Because they help flowering plants to cross-pollinate, some insects are critical to agriculture. This European honey bee is gathering nectar while pollen collects on its body.
robberfly with its prey, a hoverflyInsectivorous relationships such as these help control insect populations.

Although pest insects attract the most attention, many insects are beneficial to the environment and to humans. Some insects, like waspsbeesbutterflies and antspollinate flowering plants. Pollination is a mutualistic relationship between plants and insects. As insects gather nectar from different plants of the same species, they also spread pollen from plants on which they have previously fed. This greatly increases plants’ ability to cross-pollinate, which maintains and possibly even improves their evolutionary fitness. This ultimately affects humans since ensuring healthy crops is critical to agriculture. As well as pollination ants help with seed distribution of plants. This helps to spread the plants, which increases plant diversity. This leads to an overall better environment.[149] A serious environmental problem is the decline of populations of pollinator insects, and a number of species of insects are now cultured primarily for pollination management in order to have sufficient pollinators in the field, orchard or greenhouse at bloom time.[150]: 240–243  Another solution, as shown in Delaware, has been to raise native plants to help support native pollinators like L. vierecki.[151]

The economic value of pollination by insects has been estimated to be about $34 billion in the US alone.[152]

Products made by insects. Insects also produce useful substances such as honeywaxlacquer and silkHoney bees have been cultured by humans for thousands of years for honey, although contracting for crop pollination is becoming more significant for beekeepers. The silkworm has greatly affected human history, as silk-driven trade established relationships between China and the rest of the world.

Pest controlInsectivorous insects, or insects that feed on other insects, are beneficial to humans if they eat insects that could cause damage to agriculture and human structures. For example, aphids feed on crops and cause problems for farmers, but ladybugs feed on aphids, and can be used as a means to significantly reduce pest aphid populations. While birds are perhaps more visible predators of insects, insects themselves account for the vast majority of insect consumption. Ants also help control animal populations by consuming small vertebrates.[153] Without predators to keep them in check, insects can undergo almost unstoppable population explosions.[30]: 328–348 [30]: 400 [154][155]

Medical uses. Insects are also used in medicine, for example fly larvae (maggots) were formerly used to treat wounds to prevent or stop gangrene, as they would only consume dead flesh. This treatment is finding modern usage in some hospitals. Recently insects have also gained attention as potential sources of drugs and other medicinal substances.[156] Adult insects, such as crickets and insect larvae of various kinds, are also commonly used as fishing bait.[157]

In research

The common fruit fly Drosophila melanogaster is one of the most widely used organisms in biological research.

Insects play important roles in biological research. For example, because of its small size, short generation time and high fecundity, the common fruit fly Drosophila melanogaster is a model organism for studies in the genetics of eukaryotesD. melanogaster has been an essential part of studies into principles like genetic linkageinteractions between geneschromosomal genetics, development, behavior and evolution. Because genetic systems are well conserved among eukaryotes, understanding basic cellular processes like DNA replication or transcription in fruit flies can help to understand those processes in other eukaryotes, including humans.[158] The genome of D. melanogaster was sequenced in 2000, reflecting the organism’s important role in biological research. It was found that 70% of the fly genome is similar to the human genome, supporting the evolution theory.[159]

As food

Main articles: Insects as food and Entomophagy

In some cultures, insects form part of the normal diet. In Africa, for instance, locally abundant species of both locusts and termites are a common traditional human food source.[160] Some, especially deep-fried cicadas, are considered to be delicacies. Insects have a high protein content for their mass, and some authors suggest their potential as a major source of protein in human nutrition.[30]: 10–13  In most first-world countries, however, entomophagy (the eating of insects), is taboo.[161] They are also recommended by militaries as a survival food for troops in adversity.[160] Since it is impossible to eliminate pest insects from the human food chain, insects are inadvertently present in many foods, especially grains. Food safety laws in many countries do not prohibit insect parts in food, but rather limit their quantity. According to cultural materialist anthropologist Marvin Harris, the eating of insects is taboo in cultures that have other protein sources such as fish or livestock.

Because of the abundance of insects and a worldwide concern of food shortages, the Food and Agriculture Organization of the United Nations considers that the world may have to, in the future, regard the prospects of eating insects as a food staple. Insects are noted for their nutrients, having a high content of protein, minerals and fats and are eaten by one-third of the global population.[162]

As feed

Main article: Insects as feed

Several insect species such as the black soldier fly or the housefly in their maggot forms, as well as beetle larvae such as mealworms can be processed and used as feed for farmed animals such as chicken, fish and pigs.[163]

In other products

Further information: Biorefinery

Black soldier fly larvae can provide protein, fats for use in cosmetics,[164] and chitin.

Also, insect cooking oil, insect butter and fatty alcohols can be made from such insects as the superworm (Zophobas morio).[165][166]

As pets

Many species of insects are sold and kept as pets. There are special hobbyist magazines such as “Bugs” (now discontinued).[167]

In culture

Main article: Insects in culture

Scarab beetles held religious and cultural symbolism in Old EgyptGreece and some shamanistic Old World cultures. The ancient Chinese regarded cicadas as symbols of rebirth or immortality. In Mesopotamian literature, the epic poem of Gilgamesh has allusions to Odonata that signify the impossibility of immortality. Among the Aborigines of Australia of the Arrernte language groups, honey ants and witchetty grubs served as personal clan totems. In the case of the ‘San’ bush-men of the Kalahari, it is the praying mantis that holds much cultural significance including creation and zen-like patience in waiting.[30]: 9 

See also

Notes

  1. ^ The Museum of New Zealand notes that “in everyday conversation”, bug “refers to land arthropods with at least six legs, such as insects, spiders, and centipedes”.[14] In a chapter on “Bugs That Are Not Insects”, entomologist Gilbert Walbauer specifies centipedes, millipedes, arachnids (spiders, daddy longlegs, scorpions, miteschiggers and ticks) as well as the few terrestrial crustaceans (sowbugs and pillbugs), [15] but argues that “including legless creatures such as worms, slugs, and snails among the bugs stretches the word too much”.[16]

References

  1. Jump up to:a b Chapman, A. D. (2006). Numbers of living species in Australia and the World. Canberra: Australian Biological Resources StudyISBN 978-0-642-56850-2. Archived from the original on 30 November 2012.
  2. ^ Wilson, E. O. “Threats to Global Diversity”. Archived from the original on 20 February 2015. Retrieved 17 May 2009.
  3. ^ Novotny, Vojtech; Basset, Yves; Miller, Scott E.; Weiblen, George D.; Bremer, Birgitta; Cizek, Lukas; Drozd, Pavel (2002). “Low host specificity of herbivorous insects in a tropical forest”. Nature416 (6883): 841–844. Bibcode:2002Natur.416..841Ndoi:10.1038/416841aPMID 11976681S2CID 74583.
  4. Jump up to:a b Erwin, Terry L. (1997). Biodiversity at its utmost: Tropical Forest Beetles (PDF). pp. 27–40. Archived (PDF) from the original on 9 November 2018. Retrieved 16 December 2017. In: Reaka-Kudla, M.L.; Wilson, D. E.; Wilson, E. O., eds. (1997). Biodiversity II. Joseph Henry Press, Washington, D.C. ISBN 9780309052276.
  5. ^ Erwin, Terry L. (1982). “Tropical forests: their richness in Coleoptera and other arthropod species” (PDF). The Coleopterists Bulletin36: 74–75. Archived (PDF) from the original on 23 September 2015. Retrieved 16 September 2018.
  6. Jump up to:a b c “insect physiology” McGraw-Hill Encyclopedia of Science and Technology, Ch. 9, p. 233, 2007
  7. ^ Wigglesworth, Vincent Brian. “Insect”Encyclopædia Britannica onlineArchived from the original on 4 May 2012. Retrieved 19 April 2012.
  8. ^ “Insects could be the key to meeting food needs of growing global population”the Guardian. 31 July 2010. Retrieved 13 January 2022.
  9. ^ Ramos-Elorduy, Julieta; Menzel, Peter (1998). Creepy crawly cuisine: the gourmet guide to edible insects. Inner Traditions / Bear & Company. p. 44. ISBN 978-0-89281-747-4. Retrieved 23 April 2014.
  10. Jump up to:a b Harper, Douglas; McCormack, Dan (November 2001). “Online Etymological Dictionary”. LogoBee.com. p. 1. Archived from the original on 11 January 2012. Retrieved 1 November 2011.
  11. ^ Lewis, Charlton T.; Short, Charles (1879). “insĕco”A Latin Dictionary. Perseus Digital Library.
  12. ^ Liddell, Henry George; Scott, Robert (1940). “ἔντομος”A Greek-English Lexicon. Perseus Digital Library.
  13. ^ “insect translations”www.ezglot.com.
  14. ^ “What is a bug? Insects, arachnids, and myriapods” at Museum of New Zealand Te Papa Tongarewa website. Accessed 10 March 2022.
  15. ^ Gilbert Waldbauer. The Handy Bug Answer Book. Visible Ink, 1998. pp. 5–26. ISBN 9781578590490
  16. Jump up to:a b Gilbert Waldbauer. The Handy Bug Answer Book. Visible Ink, 1998. p. 1. ISBN 9781578590490
  17. Jump up to:a b Sasaki, Go; Sasaki, Keisuke; Machida, Ryuichiro; Miyata, Takashi; Su, Zhi-Hui (2013). “Molecular phylogenetic analyses support the monophyly of Hexapoda and suggest the paraphyly of Entognatha”BMC Evolutionary Biology13: 236. doi:10.1186/1471-2148-13-236PMC 4228403PMID 24176097.
  18. ^ Chinery 1993, p. 10.
  19. ^ Chinery, Michael (1993). Insects of Britain & Northern Europe (3rd ed.). London: HarperCollins. pp. 34–35. ISBN 978-0-00-219918-6.
  20. Jump up to:a b Kjer, Karl M.; Simon, Chris; Yavorskaya, Margarita & Beutel, Rolf G. (2016). “Progress, pitfalls and parallel universes: a history of insect phylogenetics”Journal of the Royal Society Interface13 (121): 121. doi:10.1098/rsif.2016.0363PMC 5014063PMID 27558853.
  21. ^ Hughes, Joseph & Longhorn, Stuart (2016). “The role of next generation sequencing technologies in shaping the future of insect molecular systematics”. In Olson, Peter D.; Hughes, Joseph & Cotton, James A. (eds.). Next Generation Systematics. Cambridge University Press. pp. 28–61. ISBN 978-1-139-23635-5. Retrieved 27 July 2017., pp. 29–30
  22. ^ Garwood, Russell; Edgecombe, Gregory (2011). Early terrestrial animals, evolution and uncertaintyEvolution: Education and Outreach4 (3): 489–501. doi:10.1007/s12052-011-0357-y.
  23. ^ “Palaeos invertebrates:Arthropoda”. Palaeos Invertebrates. 3 May 2002. Archived from the original on 15 February 2009. Retrieved 6 May 2009.
  24. ^ Misof, Bernhard; et al. (7 November 2014). “Phylogenomics resolves the timing and pattern of insect evolution”Science346 (6210): 763–767. Bibcode:2014Sci…346..763Mdoi:10.1126/science.1257570PMID 25378627S2CID 36008925Archived from the original on 18 October 2009. Retrieved 17 October 2009.
  25. ^ “Evolution of insect flight”. Malcolm W. Browne. 25 October 1994. Archived from the original on 18 February 2007. Retrieved 6 May 2009.
  26. ^ Dunn, C. W.; Hejnol, A.; Matus, D. Q.; et al. (10 April 2008). “Broad phylogenomic sampling improves resolution of the animal tree of life”. Nature452 (7188): 745–749. Bibcode:2008Natur.452..745Ddoi:10.1038/nature06614PMID 18322464S2CID 4397099.
  27. ^ Sroka, Günter; Staniczek, Arnold H.; Bechly (December 2014). “Revision of the giant pterygote insect Bojophlebia prokopi Kukalová-Peck 1985 (Hydropalaeoptera: Bojophlebiidae) from the Carboniferous of the Czech Republic, with the first cladistic analysis of fossil palaeopterous insects”Journal of Systematic Palaeontology13 (11): 963–982. doi:10.1080/14772019.2014.987958S2CID 84037275. Retrieved 21 May 2019.
  28. ^ Prokop, Jakub (2017). “Redefining the extinct orders Miomoptera & Hypoperlida as stem acercarian insects”BMC Evolutionary Biology17 (1): 205. doi:10.1186/s12862-017-1039-3PMC 5574135PMID 28841819.
  29. ^ Wipfler, B. (February 2019). “Evolutionary history of Polyneoptera & its implications for our understanding of early winged insects”Proceedings of the National Academy of Sciences116 (8): 3024–3029. Bibcode:2019PNAS..116.3024Wdoi:10.1073/pnas.1817794116PMC 6386694PMID 30642969.
  30. Jump up to:a b c d e f g h i j k l m n o p q r s t u v w x y z Gullan, P. J.; Cranston, P. S. (2005). The Insects: An Outline of Entomology (3rd ed.). Oxford: Blackwell Publishing. ISBN 978-1-4051-1113-3.
  31. ^ Kendall, David A. (2009). “Classification of Insect”. Archived from the original on 20 May 2009. Retrieved 9 May 2009.
  32. ^ Blanke, A., Machida, R., Szucsich, N.U., Wilde, F. and Misof, B. (2015) Mandibles with two joints evolved much earlier in the history of insects: dicondyly is a synapomorphy of bristletails, silverfish and winged insects. Syst. Entomol. 40: 357–364. https://doi.org/10.1111/syen.12107
  33. ^ Gilliott, Cedric (1995). Entomology (2nd ed.). Springer-Verlag New York, LLC. p. 96. ISBN 978-0-306-44967-3.
  34. ^ Kapoor, V.C.C. (1998). Principles and Practices of Animal Taxonomy. Vol. 1 (1st ed.). Science Publishers. p. 48. ISBN 978-1-57808-024-3.
  35. ^ Johnson, K. P.; Yoshizawa, K.; Smith, V. S. (2004). “Multiple origins of parasitism in lice”Proceedings of the Royal Society of London271 (1550): 1771–1776. doi:10.1098/rspb.2004.2798PMC 1691793PMID 15315891.
  36. ^ Terry, M. D.; Whiting, M. F. (2005). “Mantophasmatodea and phylogeny of the lower neopterous insects”Cladistics21 (3): 240–257. doi:10.1111/j.1096-0031.2005.00062.xS2CID 86259809.
  37. ^ Lo, Nathan; Tokuda, Gaku; Watanabe, Hirofumi; et al. (2000). “Evidence from multiple gene sequences indicates that termites evolved from wood-feeding cockroaches”Current Biology10 (13): 801–804. doi:10.1016/S0960-9822(00)00561-3PMID 10898984S2CID 14059547.
  38. ^ Whiting, M. F. (2002). “Mecoptera is paraphyletic: multiple genes and phylogeny of Mecoptera and Siphonaptera”Zoologica Scripta31 (1): 93–104. doi:10.1046/j.0300-3256.2001.00095.xS2CID 56100681.
  39. ^ Sahney, S.; Benton, M. J.; Falcon-Lang, H. J. (2010). “Rainforest collapse triggered Pennsylvanian tetrapod diversification in Euramerica”Geology38 (12): 1079–1082. Bibcode:2010Geo….38.1079Sdoi:10.1130/G31182.1S2CID 128642769.
  40. Jump up to:a b Carter, J. Stein (29 March 2005). “Coevolution and Pollination”. University of Cincinnati. Archived from the original on 30 April 2009. Retrieved 9 May 2009.
  41. ^ “Coevolution and Pollination”. University of Cincinnati. Archived from the original on 30 April 2009. Retrieved 9 May 2009.
  42. ^ Ross, Andrew (August 2022). “Evolution: The origin of insect wings revisited”Current Biology32 (15): R851–R853. doi:10.1016/j.cub.2022.06.087PMID 35944489S2CID 251464185.
  43. ^ Schachat, Sandra R; Goldstein, Paul Z; Desalle, Rob; Bobo, Dean M; Boyce, C Kevin; Payne, Jonathan L; Labandeira, Conrad C (2 February 2023). “Illusion of flight? Absence, evidence and the age of winged insects”Biological Journal of the Linnean Society138 (2): 143–168. doi:10.1093/biolinnean/blac137ISSN 0024-4066.
  44. ^ Wiegmann, Brian M.; Trautwein, Michelle D.; Winkler, Isaac S.; Barr, Norman B.; Kim, Jung-Wook; Lambkin, Christine; Bertone, Matthew A.; Cassel, Brian K.; Bayless, Keith M.; Heimberg, Alysha M.; Wheeler, Benjamin M.; Peterson, Kevin J.; Pape, Thomas; Sinclair, Bradley J.; Skevington, Jeffrey H.; Blagoderov, Vladimir; Caravas, Jason; Kutty, Sujatha Narayanan; Schmidt-Ott, Urs; Kampmeier, Gail E.; Thompson, F. Christian; Grimaldi, David A.; Beckenbach, Andrew T.; Courtney, Gregory W.; Friedrich, Markus; Meier, Rudolf; Yeates, David K. (14 March 2011). “Episodic radiations in the fly tree of life”Proceedings of the National Academy of Sciences108 (14): 5690–5695. Bibcode:2011PNAS..108.5690Wdoi:10.1073/pnas.1012675108PMC 3078341PMID 21402926.
  45. Jump up to:a b Stork, Nigel E. (7 January 2018). “How Many Species of Insects and Other Terrestrial Arthropods Are There on Earth?”Annual Review of Entomology63 (1): 31–45. doi:10.1146/annurev-ento-020117-043348PMID 28938083S2CID 23755007.
  46. ^ “Frequently Asked Questions on Entomology | Entomological Society of America (ESA)”. 7 February 2015. Archived from the original on 7 February 2015. Retrieved 19 July 2021.
  47. ^ Dirzo, Rodolfo; Young, Hillary; Galetti, Mauro; Ceballos, Gerardo; Isaac, Nick; Collen, Ben (25 July 2014), “Defaunation in the Anthropocene” (PDF), Science345 (6195): 401–406, Bibcode:2014Sci…345..401Ddoi:10.1126/science.1251817PMID 25061202S2CID 206555761archived (PDF) from the original on 22 September 2017, retrieved 28 April 2019
  48. ^ Briggs, John C (October 2017). “Emergence of a sixth mass extinction?”Biological Journal of the Linnean Society122 (2): 243–248. doi:10.1093/biolinnean/blx063.
  49. ^ Owens, Avalon C. S.; Lewis, Sara M. (November 2018). “The impact of artificial light at night on nocturnal insects: A review and synthesis”Ecology and Evolution8 (22): 11337–11358. doi:10.1002/ece3.4557PMC 6262936PMID 30519447.
  50. ^ Tscharntke, Teja; Klein, Alexandra M.; Kruess, Andreas; Steffan-Dewenter, Ingolf; Thies, Carsten (August 2005). “Landscape perspectives on agricultural intensification and biodiversity and ecosystem service management”Ecology Letters8 (8): 857–874. doi:10.1111/j.1461-0248.2005.00782.xS2CID 54532666.
  51. ^ Insect-plant interactions in a crop protection perspective. Academic Press. 19 January 2017. pp. 313–320. ISBN 978-0-12-803324-1.
  52. ^ Braak, Nora; Neve, Rebecca; Jones, Andrew K.; Gibbs, Melanie; Breuker, Casper J. (November 2018). “The effects of insecticides on butterflies – A review”Environmental Pollution242 (Pt A): 507–518. doi:10.1016/j.envpol.2018.06.100PMID 30005263S2CID 51625489.
  53. ^ Wagner, David L.; Van Driesche, Roy G. (January 2010). “Threats Posed to Rare or Endangered Insects by Invasions of Nonnative Species”. Annual Review of Entomology55 (1): 547–568. doi:10.1146/annurev-ento-112408-085516PMID 19743915.
  54. ^ Sánchez-Bayo, Francisco; Wyckhuys, Kris A.G. (April 2019). “Worldwide decline of the entomofauna: A review of its drivers”Biological Conservation232: 8–27. doi:10.1016/j.biocon.2019.01.020.
  55. ^ Saunders, Manu (16 February 2019). “Insectageddon is a great story. But what are the facts?”Ecology is not a dirty wordArchived from the original on 25 February 2019. Retrieved 24 February 2019.
  56. ^ van Klink, Roel (24 April 2020), “Meta-analysis reveals declines in terrestrial but increases in freshwater insect abundances”, Science368 (6489): 417–420, Bibcode:2020Sci…368..417Vdoi:10.1126/science.aax9931PMID 32327596S2CID 216106896
  57. ^ McGrath, Matt (23 April 2020). “‘Insect apocalypse’ more complex than thought”BBC News. Retrieved 24 April 2020.
  58. Jump up to:a b “Global Insect Biodiversity: Frequently Asked Questions” (PDF). Entomological Society of America. Retrieved 6 March 2019.
  59. ^ P. J. Gullan & P. S. Cranston (2010). “Taxobox 17 – Psocodea: “Psocoptera” (bark lice and book lice)”The Insects: an Outline of Entomology (4th ed.). John Wiley & Sons. p. 479. ISBN 9781444317671.
  60. ^ “O. Orkin Insect zoo”. The University of Nebraska Department of Entomology. Archived from the original on 2 June 2009. Retrieved 3 May 2009.
  61. Jump up to:a b c d e f Resh, Vincent H.; Carde, Ring T. (2009). Encyclopedia of Insects (2 ed.). U.S.: Academic Press. ISBN 978-0-12-374144-8.
  62. ^ Belles, Xavier (14 October 2019). “The innovation of the final moult and the origin of insect metamorphosis”Philosophical Transactions of the Royal Society B: Biological Sciences374 (1783): 20180415. doi:10.1098/rstb.2018.0415PMC 6711288PMID 31438822.
  63. ^ Asano, Tsunaki; Hashimoto, Kosei & Everroad, R. Craig (2023). “Eco-evolutionary implications for a possible contribution of cuticle hardening system in insect evolution and terrestrialisation”Physiological Entomology: 1–6. doi:10.1111/phen.12406S2CID 258209514.
  64. ^ Schneiderman, Howard A. (1960). “Discontinuous respiration in insects: role of the spiracles”The Biological Bulletin119 (3): 494–528. doi:10.2307/1539265JSTOR 1539265Archived from the original on 25 June 2009. Retrieved 22 May 2009.
  65. ^ “insect – Nervous system | Britannica”www.britannica.com. Retrieved 13 July 2022.
  66. ^ Eisemann, C.H.; Jorgensen, W. K.; Merritt, D. J.; Rice, M. J.; Cribb, B. W.; Webb, P. D.; Zalucki, M. P. (1984). “Do insects feel pain? – A biological view”. Cellular and Molecular Life Sciences40 (2): 1420–1423. doi:10.1007/BF01963580S2CID 3071.
  67. ^ Gibbons, Matilda; Sarlak, Sajedeh; Chittka, Lars (13 July 2022). “Descending control of nociception in insects?”Proceedings of the Royal Society B: Biological Sciences289 (1978): 20220599. doi:10.1098/rspb.2022.0599PMC 9257290PMID 35858073S2CID 250284130.
  68. ^ Tracey, J.; Wilson, R. I.; Laurent, G.; Benzer, S. (2003). “painless, a Drosophila gene essential for nociception”Cell113 (2): 261–273. doi:10.1016/S0092-8674(03)00272-1PMID 12705873S2CID 1424315.
  69. ^ Sømme, L. S. (14 January 2005). “Sentience and pain in invertebrates” (PDF). Norwegian Scientific Committee for Food Safety. Archived (PDF) from the original on 17 October 2011. Retrieved 30 September 2009.
  70. ^ Dukas, Reuven (1 January 2008). “Evolutionary Biology of Insect Learning”Annual Review of Entomology53 (1): 145–160. doi:10.1146/annurev.ento.53.103106.093343PMID 17803459.
  71. ^ “General Entomology – Digestive and Excritory system”. NC state University. Archived from the original on 23 May 2009. Retrieved 3 May 2009.
  72. ^ Bueno, Odair Correa; Tanaka, Francisco André Ossamu; de Lima Nogueira, Neusa; Fox, Eduardo Gonçalves Paterson; Rossi, Mônica Lanzoni; Solis, Daniel Russ (1 January 2013). “On the morphology of the digestive system of two Monomorium ant species”Journal of Insect Science13 (1): 70. doi:10.1673/031.013.7001PMC 3835044PMID 24224520.
  73. ^ “General Entomology – Digestive and Excretory system”. NC state University. Archived from the original on 23 May 2009. Retrieved 3 May 2009.
  74. ^ Duncan, Carl D. (1939). A Contribution to The Biology of North American Vespine Wasps (1st ed.). Stanford: Stanford University Press. pp. 24–29.
  75. Jump up to:a b c Nation, James L. (2001). “Digestion”Insect Physiology and Biochemistry (1st ed.). CRC Press. ISBN 978-0-8493-1181-9.
  76. ^ “What Keeps Bugs from Being Bigger?”. Argonne National Laboratory. 8 August 2007. Archived from the original on 14 May 2017. Retrieved 15 July 2013.
  77. ^ Chown, S. L.; S. W. Nicholson (2004). Insect Physiological Ecology. New York: Oxford University Press. ISBN 978-0-19-851549-4.
  78. Jump up to:a b c Richard W. Merritt; Kenneth W. Cummins; Martin B. Berg, eds. (2007). An Introduction to the Aquatic Insects of North America (4th ed.). Kendall Hunt Publishers. ISBN 978-0-7575-5049-2.
  79. ^ Merritt, R. W.; K. W. Cummins; M. B. Berg (2007). An Introduction To The Aquatic Insects Of North America. Kendall Hunt Publishing Company. ISBN 978-0-7575-4128-5.
  80. ^ Meyer, John R. (17 February 2006). “Circulatory System”. NC State University: Department of Entomology, NC State University. p. 1. Archived from the original on 27 September 2009. Retrieved 11 October 2009.
  81. ^ Triplehorn, Charles (2005). Borror and DeLong’s introduction to the study of insects. Johnson, Norman F., Borror, Donald J. (7th ed.). Belmont, California: Thompson Brooks/Cole. pp. 27–28. ISBN 978-0030968358OCLC 55793895.
  82. ^ Chapman, R. F. (1998). The Insects; Structure and Function (4th ed.). Cambridge, UK: Cambridge University Press. ISBN 978-0521578905.
  83. ^ Wyatt, G. R. (1961). “The Biochemistry of Insect Hemolymph”Annual Review of Entomology6: 75–102. doi:10.1146/annurev.en.06.010161.000451S2CID 218693.
  84. ^ Jacobs, C. G.; Rezende, G. L.; Lamers, G. E.; van der Zee, M. (2013). “The extraembryonic serosa protects the insect egg against desiccation”Proceedings of the Royal Society of London B280 (1764): 20131082. doi:10.1098/rspb.2013.1082PMC 3712428PMID 23782888.
  85. ^ “Glossary of Lepidopteran and Odonate anatomy”Rare species atlas. Virginia Department of Conservation and Recreation. 2013. Archived from the original on 4 October 2013. Retrieved 14 June 2013.
  86. ^ Judson, Olivia (14 August 2002). Dr. Tatiana’s Sex Advice to All Creation: The Definitive Guide to the Evolutionary Biology of Sex. Macmillan. p. 198. ISBN 978-0-8050-6331-8.
  87. ^ Hughes, William O. H.; Oldroyd, Benjamin P.; Beekman, Madeleine; Ratnieks, Francis L. W. (2008). “Ancestral Monogamy Shows Kin Selection Is Key to the Evolution of Eusociality”. Science320 (5880): 1213–1216. Bibcode:2008Sci…320.1213Hdoi:10.1126/science.1156108PMID 18511689S2CID 20388889.
  88. ^ Nevo, E.; Coll, M. (2001). “Effect of nitrogen fertilization on Aphis gossypii (Homoptera: Aphididae): variation in size, color, and reproduction”Journal of Economic Entomology94 (1): 27–32. doi:10.1603/0022-0493-94.1.27PMID 11233124S2CID 25758038.
  89. ^ Jahn, G. C.; Almazan, L .P.; Pacia, J. (2005). “Effect of nitrogen fertilizer on the intrinsic rate of increase of the rusty plum aphid, Hysteroneura setariae (Thomas) (Homoptera: Aphididae) on rice (Oryza sativa L.)” (PDF). Environmental Entomology34 (4): 938–943. doi:10.1603/0046-225X-34.4.938S2CID 1941852. Archived from the original (PDF) on 9 September 2010.
  90. ^ Hadley, Debbie. “Where do insects go in winter?”About.comArchived from the original on 18 January 2012. Retrieved 19 April 2012.
  91. ^ Lee, Richard E. Jr. (1989). “Insect Cold-Hardiness: To Freeze or Not to Freeze” (PDF). BioScience39 (5): 308–313. doi:10.2307/1311113JSTOR 1311113Archived (PDF) from the original on 10 January 2011. Retrieved 2 December 2009.
  92. ^ Ruppert, E. E.; Fox, R. S.; Barnes, R. D. (2004). Invertebrate Zoology (7th ed.). Brooks / Cole. pp. 523–524ISBN 978-0-03-025982-1.
  93. ^ “Insects” (PDF). Alien Life Forms. p. 4. Archived (PDF) from the original on 8 July 2011. Retrieved 17 May 2009.
  94. ^ Esch, Harald (1971). “Wagging Movements in the Wasp Polistes versicolor Vulgaris Bequaert”. Zeitschrift für Vergleichende Physiologie72 (3): 221–225. doi:10.1007/bf00297781S2CID 46240291.
  95. ^ Cator, L.J.; Arthur, B.J.; Harrington, L.C.; Hoy, R.R. (2009). “Harmonic convergence in the love songs of the dengue vector mosquito”Science323 (5917): 1077–1079. Bibcode:2009Sci…323.1077Cdoi:10.1126/science.1166541PMC 2847473PMID 19131593.
  96. ^ Möller, R. (2002). A Biorobotics Approach to the Study of Insect Visual Homing Strategies (PDF) (in German). p. 11. Archived (PDF) from the original on 10 January 2011. Retrieved 23 April 2009.
  97. ^ Pugsley, Chris W. (1983). “Literature review of the New Zealand glowworm Arachnocampa luminosa (Diptera: Keroplatidae) and related cave-dwelling Diptera” (PDF). New Zealand Entomologist7 (4): 419–424. doi:10.1080/00779962.1983.9722435. Archived from the original (PDF) on 20 October 2007.
  98. ^ Lloyd, James E. (1984). “Occurrence of Aggressive Mimicry in Fireflies”The Florida Entomologist67 (3): 368–376. doi:10.2307/3494715JSTOR 3494715S2CID 86502129.
  99. ^ Lloyd, James E.; Gentry, Erin C. (2003). The Encyclopedia of Insects. Academic Press. pp. 115–120ISBN 978-0-12-586990-4.
  100. ^ Briscoe, A. D.; Chittka, L. (2001). “The evolution of color vision in insects”Annual Review of Entomology46: 471–510. doi:10.1146/annurev.ento.46.1.471PMID 11112177S2CID 20894534.
  101. ^ Kemppainen, Joni; Scales, Ben; Razban Haghighi, Keivan; Takalo, Jouni; Mansour, Neveen; McManus, James; Leko, Gabor; Saari, Paulus; Hurcomb, James; Antohi, Andra; Suuronen, Jussi-Petteri; Blanchard, Florence; Hardie, Roger C.; Song, Zhuoyi; Hampton, Mark; Eckermann, Marina; Westermeier, Fabian; Frohn, Jasper; Hoekstra, Hugo; Lee, Chi-Hon; Huttula, Marko; Mokso, Rajmund; Juusola, Mikko (22 March 2022). “Binocular mirror–symmetric microsaccadic sampling enables Drosophila hyperacute 3D vision”Proceedings of the National Academy of Sciences119 (12): e2109717119. Bibcode:2022PNAS..11909717Kdoi:10.1073/pnas.2109717119PMC 8944591PMID 35298337.
  102. ^ Warren, Ben; Nowotny, Manuela (11 April 2021). “Bridging the Gap Between Mammal and Insect Ears – A Comparative and Evolutionary View of Sound-Reception”Frontiers in Ecology and Evolution9doi:10.3389/fevo.2021.667218.
  103. ^ “The University of Florida Book of Insect Records”entnemdept.ufl.edu. Department of Entomology & Nematology, UF/IFAS. Retrieved 13 January 2022.
  104. ^ Kay, Robert E. (1969). “Acoustic signalling and its possible relationship to assembling and navigation in the moth, Heliothis zea“. Journal of Insect Physiology15 (6): 989–1001. doi:10.1016/0022-1910(69)90139-5.
  105. ^ Spangler, Hayward G. (1988). “Moth hearing, defense, and communication”. Annual Review of Entomology33 (1): 59–81. doi:10.1146/annurev.ento.33.1.59.
  106. ^ Hristov, N. I.; Conner, William E. (2005). “Sound strategy: acoustic aposematism in the bat–tiger moth arms race”. Naturwissenschaften92 (4): 164–169. Bibcode:2005NW…..92..164Hdoi:10.1007/s00114-005-0611-7PMID 15772807S2CID 18306198.
  107. ^ Barber, J. R.; Conner, W. E. (2007). “Acoustic mimicry in a predator–prey interaction”Proceedings of the National Academy of Sciences104 (22): 9331–9334. Bibcode:2007PNAS..104.9331Bdoi:10.1073/pnas.0703627104PMC 1890494PMID 17517637.
  108. ^ Corcoran, Aaron J.; Barber, Jesse R.; Conner, William E. (2009). “Tiger Moth Jams Bat Sonar”Science325 (5938): 325–327. Bibcode:2009Sci…325..325Cdoi:10.1126/science.1174096PMID 19608920S2CID 206520028.
  109. ^ Theiss, Joachim (1982). “Generation and radiation of sound by stridulating water insects as exemplified by the corixids”. Behavioral Ecology and Sociobiology10 (3): 225–235. doi:10.1007/BF00299689S2CID 10338592.
  110. ^ Virant-Doberlet, M.; Čokl, Andrej (2004). “Vibrational communication in insects”Neotropical Entomology33 (2): 121–134. doi:10.1590/S1519-566X2004000200001.
  111. ^ Bennet-Clark, H.C. (1998). “Size and scale effects as constraints in insect sound communication”Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences353 (1367): 407–419. doi:10.1098/rstb.1998.0219PMC 1692226.
  112. ^ Miklas, Nadège; Stritih, Nataša; Čokl, Andrej; Virant-Doberlet, Meta; Renou, Michel (2001). “The Influence of Substrate on Male Responsiveness to the Female Calling Song in Nezara viridula“. Journal of Insect Behavior14 (3): 313–332. doi:10.1023/A:1011115111592S2CID 11369425.
  113. ^ DeVries, P.J. (1990). “Enhancement of symbiosis between butterfly caterpillars and ants by vibrational communication”. Science248 (4959): 1104–1106. Bibcode:1990Sci…248.1104Ddoi:10.1126/science.248.4959.1104PMID 17733373S2CID 35812411.
  114. ^ Nelson, Margaret C.; Fraser, Jean (1980). “Sound production in the cockroach, Gromphadorhina portentosa: evidence for communication by hissing”. Behavioral Ecology and Sociobiology6 (4): 305–314. doi:10.1007/BF00292773S2CID 9637568.
  115. ^ Moritz, R. F. A.; Kirchner, W. H.; Crewe, R. M. (1991). “Chemical camouflage of the death’s head hawkmoth (Acherontia atropos L.) in honeybee colonies”. Naturwissenschaften78 (4): 179–182. Bibcode:1991NW…..78..179Mdoi:10.1007/BF01136209S2CID 45597312.
  116. ^ Thomas, Jeremy; Schönrogge, Karsten; Bonelli, Simona; Barbero, Francesca; Balletto, Emilio (2010). “Corruption of ant acoustical signals by mimetic social parasites”Communicative and Integrative Biology3 (2): 169–171. doi:10.4161/cib.3.2.10603PMC 2889977PMID 20585513.
  117. ^ Yan, Hua; Liebig, Jürgen (1 April 2021). “Genetic basis of chemical communication in eusocial insects”Genes & DevelopmentCold Spring Harbor Laboratory Press & The Genetics Society35 (7–8): 470–482. doi:10.1101/gad.346965.120PMC 8015721PMID 33861721.
  118. ^ Brewer, Gary. “Social insects”. North Dakota State University. Archived from the original on 21 March 2008. Retrieved 6 May 2009.
  119. ^ Leadbeater, E.; Chittka, L. (2007). “The dynamics of social learning in an insect model, the bumblebee (Bombus terrestris)”. Behavioral Ecology and Sociobiology61 (11): 1789–1796. doi:10.1007/s00265-007-0412-4S2CID 569654.
  120. ^ Salt, R. W. (1961). “Principles of Insect Cold-Hardiness”. Annual Review of Entomology6: 55–74. doi:10.1146/annurev.en.06.010161.000415.
  121. ^ “Social Insects”. North Dakota State University. Archived from the original on 21 March 2008. Retrieved 12 October 2009.
  122. ^ The Complete Insect: Anatomy, Physiology, Evolution, and Ecology
  123. ^ Jockusch, EL; Ober, KA (September 2004). “Hypothesis testing in evolutionary developmental biology: a case study from insect wings”Journal of Heredity95 (5): 382–396. doi:10.1093/jhered/esh064PMID 15388766.
  124. ^ Dudley, R (1998). “Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance” (PDF). Journal of Experimental Biology201 (8): 1043–1050. doi:10.1242/jeb.201.8.1043PMID 9510518Archived (PDF) from the original on 24 January 2013. Retrieved 8 December 2012.
  125. ^ “Chapter 32: Largest Lepidopteran Wing Span | The University of Florida Book of Insect Records | Department of Entomology & Nematology | UF/IFAS”entnemdept.ufl.edu. Retrieved 13 January 2022.
  126. ^ Yates, Diana. “Birds migrate together at night in dispersed flocks, new study indicates”news.illinois.edu. Retrieved 13 January 2022.
  127. ^ Drake, V. A.; Farrow, R. A. (1988). “The Influence of Atmospheric Structure and Motions on Insect Migration”. Annual Review of Entomology33: 183–210. doi:10.1146/annurev.en.33.010188.001151.
  128. ^ Bart Geerts and Dave Leon (2003). P5A.6 “Fine-Scale Vertical Structure of a Cold Front As Revealed By Airborne 95 GHZ Radar” Archived 7 October 2008 at the Wayback MachineUniversity of Wyoming. Retrieved on 26 April 2009.
  129. ^ Long, Teng; Hu, Cheng; Wang, Rui; Zhang, Tianran; Kong, Shaoyang; Li, Weidong; Cai, Jiong; Tian, Weiming; Zeng, Tao (1 January 2020). “Entomological Radar Overview: System and Signal Processing”. IEEE Aerospace & Electronic Systems Magazine35 (1): 20–32. doi:10.1109/maes.2019.2955575S2CID 216536583.
  130. Jump up to:a b Biewener, Andrew A. (2003). Animal Locomotion. Oxford University Press. ISBN 978-0-19-850022-3.[page needed]
  131. ^ Grabowska, Martyna; Godlewska, Elzbieta; Schmidt, Joachim; Daun-Gruhn, Silvia (2012). “Quadrupedal gaits in hexapod animals – inter-leg coordination in free-walking adult stick insects”Journal of Experimental Biology215 (24): 4255–4266. doi:10.1242/jeb.073643PMID 22972892.
  132. ^ Ikawa, Terumi; Okabe, Hidehiko; Hoshizaki, Sugihiko; Kamikado, Takahiro; Cheng, Lanna (2004). “Distribution of the oceanic insects Halobates (Hemiptera: Gerridae) off the south coast of Japan”Entomological Science7 (4): 351–357. doi:10.1111/j.1479-8298.2004.00083.xS2CID 85017400.
  133. ^ Mill, P. J.; Pickard, R. S. (1975). “Jet-propulsion in anisopteran dragonfly larvae”. Journal of Comparative Physiology A97 (4): 329–338. doi:10.1007/BF00631969S2CID 45066664.
  134. ^ Linsenmair, K.; Jander, R. (1976). “Das “entspannungsschwimmen” von Velia and StenusNaturwissenschaften50 (6): 231. Bibcode:1963NW…..50..231Ldoi:10.1007/BF00639292S2CID 40832917.
  135. ^ Bush, J. W. M.; Hu, David L. Hu (2006). “Walking on Water: Biolocomotion at the Interface” (PDF). Annual Review of Fluid Mechanics38 (1): 339–369. Bibcode:2006AnRFM..38..339Bdoi:10.1146/annurev.fluid.38.050304.092157. Archived from the original (PDF) on 10 July 2007.
  136. ^ Schowalter, Timothy Duane (2006). Insect ecology: an ecosystem approach (2nd (illustrated) ed.). Academic Press. p. 572. ISBN 978-0-12-088772-9Archived from the original on 3 June 2016. Retrieved 27 October 2015.
  137. ^ Losey, John E.; Vaughan, Mace (2006). “The Economic Value of Ecological Services Provided by Insects”BioScience56 (4): 311–323(13). doi:10.1641/0006-3568(2006)56[311:TEVOES]2.0.CO;2Archived from the original on 12 January 2012. Retrieved 8 November 2011.
  138. Jump up to:a b Ritland, D. B.; L. P. Brower (1991). “The viceroy butterfly is not a Batesian mimic”. Nature350 (6318): 497–498. Bibcode:1991Natur.350..497Rdoi:10.1038/350497a0S2CID 28667520Viceroys are as unpalatable as monarchs, and significantly more unpalatable than queens from representative Florida populations.
  139. Jump up to:a b c d Evans, Arthur V.; Charles Bellamy (2000). An Inordinate Fondness for BeetlesUniversity of California PressISBN 978-0-520-22323-3.
  140. ^ “Photos: Masters of Disguise – Amazing Insect Camouflage”. 24 March 2014. Archived from the original on 12 June 2015. Retrieved 11 June 2015.
  141. ^ Bedford, Geoffrey O. (1978). “Biology and Ecology of the Phasmatodea”. Annual Review of Entomology23: 125–149. doi:10.1146/annurev.en.23.010178.001013.
  142. ^ Meyer, A. (2006). “Repeating Patterns of Mimicry”PLOS Biology4 (10): e341. doi:10.1371/journal.pbio.0040341PMC 1617347PMID 17048984.
  143. ^ Kricher, John (1999). “6”A Neotropical CompanionPrinceton University Press. pp. 157–158. ISBN 978-0-691-00974-2.
  144. ^ “Pollinator Factsheet” (PDF). United States Forest Service. Archived from the original (PDF) on 10 April 2008. Retrieved 19 April 2012.
  145. ^ Bale, J. S.; van Lenteren, J. C.; Bigler, F. (27 February 2008). “Biological control and sustainable food production”Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences363 (1492): 761–776. doi:10.1098/rstb.2007.2182PMC 2610108PMID 17827110.
  146. ^ Davidson, E. (2006). Big Fleas Have Little Fleas: How Discoveries of Invertebrate Diseases Are Advancing Modern Science. Tucson, Ariz.: University of Arizona Press. ISBN 978-0-8165-2544-7.
  147. ^ Colborn, T.; vom Saal, F. S.; Soto, A. M. (October 1993). “Developmental effects of endocrine-disrupting chemicals in wildlife and humans”Environmental Health Perspectives101 (5): 378–384. doi:10.2307/3431890JSTOR 3431890PMC 1519860PMID 8080506.
  148. ^ Nakamaru, M.; Iwasab, Y.; Nakanishic, J. (October 2003). “Extinction risk to bird populations caused by DDT exposure”. Chemosphere53 (4): 377–387. Bibcode:2003Chmsp..53..377Ndoi:10.1016/S0045-6535(03)00010-9PMID 12946395.
  149. ^ Holldobler, Wilson (1994). Journey to the ants: a story of scientific exploration. Cambridge, Massachusetts: Belknap Press of Haravard University Press. pp. 196–199ISBN 978-0-674-48525-9.
  150. ^ Smith, Deborah T. (1991). Agriculture and the Environment: The 1991 Yearbook of Agriculture (1991 ed.). United States Government Printing. ISBN 978-0-16-034144-1.
  151. ^ “Farming for native bees – SARE Grant Management System”projects.sare.org. Retrieved 13 January 2022.
  152. ^ Jordan, Alex; Patch, Harland M.; Grozinger, Christina M.; Khanna, Vikas (26 January 2021). “Economic Dependence and Vulnerability of United States Agricultural Sector on Insect-Mediated Pollination Service”Environmental Science & Technology55 (4): 2243–2253. Bibcode:2021EnST…55.2243Jdoi:10.1021/acs.est.0c04786PMID 33496588S2CID 231710967.
  153. ^ Camargo, Rafael; Oliveira, Paulo (2011). “Natural history of the Neotrobical arboreal ant, Odontomachus hastatus: Nest sites, foraging schedule, and diet”Journal of Insect Science12 (18): 48. doi:10.1673/031.012.4801PMC 3476954PMID 22957686.
  154. ^ “Biocontrol Network – Beneficial Insects”. Biocontrol Network. Archived from the original on 28 February 2009. Retrieved 9 May 2009.
  155. ^ Davidson, R. H.; Lyon, William F. (1979). Insect Pests of Farm, Garden, and Orchard. Wiley, John & Sons. p. 38. ISBN 978-0-471-86314-4.
  156. ^ Dossey, Aaron T. (December 2010). “Insects and their chemical weaponry: New potential for drug discovery”. Natural Product Reports27 (12): 1737–1757. doi:10.1039/c005319hPMID 20957283.
  157. ^ Sherman, Ronald A.; Pechter, Edward A. (1987). “Maggot therapy: a review of the therapeutic applications of fly larvae in human medicine, especially for treating osteomyelitis”. Medical and Veterinary Entomology2 (3): 225–230. doi:10.1111/j.1365-2915.1988.tb00188.xPMID 2980178S2CID 44543735.
  158. ^ Pierce, B. A. (2006). Genetics: A Conceptual Approach (2nd ed.). New York: W.H. Freeman and Company. p. 87ISBN 978-0-7167-8881-2.
  159. ^ Adams, M. D.; Celniker, S. E.; Holt, R. A.; et al. (24 March 2000). “The genome sequence of Drosophila melanogaster“. Science287 (5461): 2185–2195. Bibcode:2000Sci…287.2185.CiteSeerX 10.1.1.549.8639doi:10.1126/science.287.5461.2185PMID 10731132.
  160. Jump up to:a b “Insects as Food for Humans”. Retrieved 14 September 2022.
  161. ^ Michels, John (1880). John Michels (ed.). Science. Vol. 1. New York: American Association for the Advance of Science. p. 69.
  162. ^ Maierbrugger, Arno (14 May 2013). “UN: Insects are ‘food of the future’ (video)”Inside InvestorArchived from the original on 10 September 2013. Retrieved 17 May 2013.
  163. ^ “How AgriProtein makes chicken food from maggots”Wired UK. Retrieved 13 January 2022.
  164. ^ Verheyen, Geert; Ooms, Tom; Vogels, Liesbeth; Vreysen, Steven; Bovy, Ann; Van Miert, Sabine; Meersman, Filip (1 May 2018). “Insects as an Alternative Source for the Production of Fats for Cosmetics”Journal of Cosmetic Science69 (3): 187–202. PMID 30052193.
  165. ^ “Biteback”Biteback. Retrieved 13 January 2022.
  166. ^ “From Pest to Pot: Can Insects Feed the World?”Culture. 15 August 2016. Retrieved 13 January 2022.
  167. ^ Bugs. “Bugs – das Wirbellosenmagazin”NTV Verlag. Retrieved 7 March 2021.